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Preface

This book edition highlights recent trends and important issues that still remain
only partially solved or even unsolved within the broad field of discourse and
dialogue. The field is discussed and illustrated both from an overall spoken
(multimodal) dialogue system perspective as well as from a more component-
related perspective. Issues discussed include, for example, discourse and
dialogue modelling in research versus industrial spoken dialogue systems,
evaluation, miscommunication and error handling, grounding, statistical and
corpus-based approaches to discourse and dialogue modelling, data analysis,
and corpus annotation and annotation tools.

We believe that jointly this collection of chapters provides a good picture
of how far we are today within discourse and dialogue and of important chal-
lenges ahead. On this background we hope that computer scientists, engineers,
and others who work in the broad area of discourse and dialogue, no matter if
from an academic or industrial perspective, may benefit from the book and find
it useful to their own work. Graduate students and Ph.D. students focusing on
topics in discourse and dialogue may also find the book interesting and profit
from reading it.

This book edition is based on a selected subset of papers from the successful
6th SIGdial Workshop on Discourse and Dialogue held in Lisbon, Portugal, in
September 2005 in conjunction with the 9th Eurospeech (Interspeech) confer-
ence. SIGdial is a special interest group on discourse and dialogue sponsored
jointly by the two parent organisations ACL (Association for Computational
Linguistics) and ISCA (International Speech Communication Association).

The annual two-day SIGdial workshops normally attract a considerable
amount of papers. The workshop in 2005 attracted 80 submissions which is
the highest submission rate to date for the SIGdial workshop series. Twenty-
eight papers were accepted for the workshop and of these 10 were invited for
publication in this book along with a paper by an invited speaker, i.e. a total of
11 papers.

All workshop papers were extended and revised before they were submitted
as book chapters. Each chapter has subsequently been reviewed by two external
reviewers and further improved on the basis of their comments.

ix
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Knowledge on discourse and dialogue empowers the development of increas-
ingly advanced dialogue managers and spoken dialogue systems, be they uni-
modal or multimodal, for use in stationary or mobile environments. During the
last 15–20 years significant progress has been made in the technologies which
form part of spoken (multimodal) dialogue systems, including dialogue or in-
teraction management. Commercial dialogue systems in the early and mid-
1990s were basically telephone-based and had very small vocabularies and
simple dialogue management. Research systems were also mostly unimodal
and included, e.g., train timetable information systems with larger vocabular-
ies and more complex dialogue management. Systems like these matured and
have now been in commercial use for several years.

Research systems moved on to address new challenges by including, e.g.,
other modalities in addition to speech, looking at applications for use in mobile
environments, such as in-car systems, and, quite recently, trying to move be-
yond purely task-oriented dialogue. As part of this development process, tech-
nologies already in use have continuously been improved and new technologies
have been taken up to enable increasingly powerful and diverse applications.

Nevertheless, the achievement of the ultimate goal – i.e., full natural interac-
tivity where we communicate with systems in the same way we communicate
with humans – is still far ahead. Many problems addressed already still remain
unsolved or only partially solved. There are, of course, also many problems
which eventually have been solved, thus contributing to the technology ad-
vances that enable the construction of increasingly sophisticated systems. This
again leads to a demand for finding solutions to new problems in order for
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this development to proceed. Actually new problems tend to appear at an even
faster pace than old problems are solved due to the ever-increasing system
complexity and diversity.

In the following we discuss current trends in discourse and dialogue in the
light of important problems that are being addressed today and in relation to
the chapters in this book (Section 1). As part of the discussion we also point
to challenges ahead. In Section 2 we provide a brief overview of each of the
eleven chapters that are included. Finally, Section 3 addresses readership.

1. Trends and Challenges
Based on the chapters in this book and our own experience we now present
a number of important issues which, we believe, provide a good picture of
current trends in discourse and dialogue and some of the challenges we are
faced with.

1.1 System Variability and the Need
for Discourse and Dialogue Modelling

The requirements to discourse and dialogue modelling vary across applica-
tions. It is therefore no surprise that most chapters in this book discuss dis-
course and dialogue in the context of some particular application. Chapter
2 by Wang and Hamerich concerns the development of a commercial, in-
car, speech-controlled MP3 player. Chapter 3 by Traum, Swartout, Gratch,
and Marsella deals with advanced discourse and dialogue modelling for a
multimodal negotiation trainer in a military environment. In an evaluation con-
text Chapter 4 by Möller addresses spoken dialogue for controlling domestic
devices, such as lamps, video recorder, and answering machine. Chapter 6 by
Bohus and Rudnicky investigates non-understanding recovery strategies in a
phone-based conference room reservation system. In Chapter 7 by Skantze
discourse and dialogue modelling issues, e.g., grounding and miscommunica-
tion, for a speech-based, pedestrian city navigation and guidance system are
discussed. Chapter 8 by Williams, Poupart, and Young has its focus on sta-
tistical approaches to improving dialogue management using air ticket pur-
chase as an example application. Chapter 9 by Denecke and Yasuda deals with
machine learning to decide if users of restricted domain question-answering
systems should be prompted for more information. The example system used
can provide information about various aspects of travel destinations in Japan.
Chapter 10 by Gruenstein, Niekrasz, and Purver discusses multiparty meeting
discourse data. The kind of application aimed at is a system that can understand
and process multiparty meetings and, e.g., summarise them and draw attention
to particular issues. Chapter 11 by Forbes-Riley and Litman, finally, explores
cognitive aspects related to the development of tutoring systems.
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Some of these systems are in themselves not new but they serve as test beds
to explore issues which still challenge us, e.g., aspects of evaluation, miscom-
munication and how to recover from it, or some kind of improvement of dia-
logue management. Other systems are very interesting as applications, such
as the negotiation trainer and the tutoring system. Indeed these system are
also used to explore the modelling of issues like social behaviour or student
certainty. However, at the same time they take a step towards going beyond
task-orientation.

As it appears from the above and as we shall also discuss in the follow-
ing subsections, there are still challenges related to what we – at least from
a research point of view – may consider relatively simple applications. The
amount of new challenges increases dramatically the more – in all respects –
diverse systems we want to develop. There seems to be a trend towards build-
ing more and more human-like systems that can act as tutors, companions,
friends, secretaries or whatever. Successful construction of such systems poses
huge demands on not least discourse and dialogue modelling.

1.2 Interaction Design
Interaction design is an issue that continues to challenge us when building
spoken (multimodal) dialogue systems. The major reason for this is that users
cannot just interact with a system in whichever way they want and expect to
be understood. Today’s systems are still far from being able to handle fully
spontaneous conversational dialogue.

The solution to this problem is in a sense straightforward, i.e., we have to
work within the existing limitations while at the same time – at least on the
research side – we continue to push the borders for what the systems can do.

Chapter 1 by Pieraccini and Huerta discusses some of the differences in
dialogue model design and interaction design between commercial and re-
search applications, respectively. Commercial applications normally cover
well-defined and limited task domains. Within the chosen task domain a com-
mercial system tries to cater for every possible kind of input, including error
situations, to ensure completeness and robustness. Full natural language in-
teraction is not required for the user to feel that s/he has a natural dialogue
with such a system. However, to induce this feeling in users, it is necessary to
carefully craft and control the user–system interaction via the system’s output
so that the user naturally stays within the limits of the system. This again
requires knowledge on what users perceive as natural interaction within the
chosen task domain. Chapter 2 by Wang and Hamerich addresses this issue in
the context of a commercial, in-car MP3 player.

While commercial applications strive to be complete within their delimited
task domains, research systems usually have other goals, such as exploring or
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testing new techniques, or serving to show that something is feasible, or that
one approach works better than another. The negotiation trainer presented in
Chapter 3 by Traum, Swartout, Gratch, and Marsella is a good example of
a research system which, on the one hand, is very limited because it is far
from trying to handle its entire task domain completely. On the other hand, the
handling of the selected training scenario requires knowledge and techniques
that we are only at the beginning to explore.

Skilful interaction design has always been a challenge and remains so,
among other things because users tend to behave very differently and some-
times quite unpredictably. It is therefore hard to predict how they would like
to interact with a new application. Regarding new challenges, Chapter 3 illus-
trates some of those we have to face, the more human-like interactions we want
to model. Such new challenges include, among others, modelling of social be-
haviour (Chapter 3), cognitive parameters like certainty (Chapter 11), and new
aspects of dialogue strategies (Chapter 3).

1.3 Evaluation
Evaluation is an old issue but has moved more and more into focus over the
years. In particular evaluation of usability aspects is being researched today
and continues to challenge us.

Evaluation may be quantitative or qualitative, and objective or subjective.
Quantitative and objective measures are preferred because they are much easier
to interpret and compare than, in particular, subjective, qualitative data. Nev-
ertheless, subjective, qualitative data remains crucial since there is no way in
which to safely predict how user’s will receive a system based on quantitative
or qualitative, objective data.

Several models have been developed to predict usability of unimodal, task-
oriented, spoken dialogue systems based on some set of parameters (Chapter
4) but none of them seem to produce results which strongly correlate with
results from subjective evaluation data. Thus, it is perhaps characteristic that
the recommendations provided by the International Telecommunication Union
(ITU) and presented in Chapter 4 contain both subjective evaluation methods
for telephone-based spoken dialogue services as well as a set of interaction
parameters which address system performance and which can be objectively
measured. As the investigation presented in Chapter 4 by Möller shows, there
is only a weak correlation between the parameters extracted from log files from
user–system interactions and the subjective data obtained by asking users. Both
kinds of data provide a separate contribution to the evaluation of a system.

Also the more sophisticated PARADISE model is far from providing results
that can replace subjective user data (Chapter 4). A major problem seems to
be that there are very many parameters which may affect user satisfaction and
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how users perform with, and perceive, a system. Precisely which they all are
and with which weight they contribute in a given system context is unknown.
This means that so far we do not know exactly what makes users happy. In
all cases users’ interaction with the (possibly simulated) system continues to
be crucial to collect objective as well as subjective data to evaluate system
usability. This trend is illustrated in Chapters 2, 3, 7 and 11. In these chapters
data are collected with users for the evaluation of an in-car MP3 player, a
negotiation trainer, a system for pedestrian city navigation and guidance, and a
tutoring system, respectively.

There are still gaps in our knowledge on usability evaluation of unimodal,
task-oriented systems but many more new challenges are appearing these
years. The increasing sophistication of spoken (multimodal) dialogue systems,
the use of different modalities, and the development of mobile applications
and of non-task-oriented systems are all creating new evaluation challenges.
Open questions include, e.g., which are the relevant parameters and questions
to ask users when we evaluate non-task-oriented systems, how do we figure
out which preferences and priorities users have (just asking them may not be
enough) and how do we evaluate new systems and system types in the light of
these, and how do we evaluate the use of emotions and cognitive parameters?
Moreover, we need more knowledge on long-term effects which again requires
evaluation.

1.4 Miscommunication
Handling of miscommunication is not a new issue but it remains a challenge.
It is well known that miscommunication should be avoided if at all possible.
However, no matter the precautions we take in the design of a dialogue system,
miscommunication will inevitably occur from time to time, both in terms of
non-understandings, misunderstandings, and misinterpretations.

Most work on miscommunication so far has focused on speech recognition
accuracy, cf. Chapter 5 by McTear. Although speech recognition is a fairly
frequent source of miscommunication, it is not the only one. For example, out-
of-grammar formulations or requests for non-existing functionality are other
sources. However, no matter what caused the problem, it is in all cases the
task of the dialogue manager to handle miscommunication in a reasonable way
which is not always straightforward to do.

Non-understandings are always detected immediately, contrary to misun-
derstandings and misinterpretations which are sometimes only detected much
later in a dialogue, or not at all (Chapter 5). There are many ways in which to
try to recover from a non-understanding error, e.g., by just repeating output,
providing help on what the user can say, or moving on in the dialogue and
trying to get the missing information later. However, not all ways are equally
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good in all situations as discussed by Bohus and Rudnicky in Chapter 6 that
reports on an empirical study of non-understanding errors in the context of a
conference room reservation system, and on ten different recovery strategies.

Feedback supports immediate detection of misunderstandings and misinter-
pretations. Depending on what caused the misunderstanding, immediate cor-
rection may be more or less difficult to handle. Sometimes a simple rephrasing
may suffice. Sometimes, if the user, e.g., addressed some out-of-domain issue
which is then being misunderstood rather than not understood, successful cor-
rection is much more difficult. If a misunderstanding or misinterpretation is
only detected much later in a dialogue, correction becomes a more complex
action. Depending on how the correction is phrased, it may be difficult for the
system to figure out what should be corrected. Moreover, not only must the
new piece of information provided by the user replace the relevant old one.
It also needs to be checked if information has already been obtained that is
dependent on the corrected information. For instance, if a person changes the
destination when trying to book a flight ticket, date and time may also have to
be changed.

If possible, commercial systems tend to connect to a human operator if the
system is not able to recover from a miscommunication after three trials. If this
possibility does not exist, the system may, e.g., refer to a website for further
information or it will have to deal with the problem on its own (Chapter 2) like
most research systems do. For good reasons research systems normally do not
use an operator solution. Rather, they provide, e.g., suggestions on what the
user could try to do, such as talk about something different, or the system takes
the initiative itself and starts talking about something else (Chapter 3).

The previous paragraphs give an impression of how far we are today in
handling miscommunication but also of where the challenges are. In fact part
of the solution to miscommunication problems may lie in improved interaction
design to avoid – better than today – that users are led to believe that the system
has more or other functionality than is actually the case. Still, miscommunica-
tion situations will not entirely disappear. To become better at handling these,
we need, among other things, further empirical investigations in broad domain
contexts of miscommunication recovery strategies. Moreover, as suggested in
Chapter 5, the spoken dialogue community may to a larger extent than so far,
begin to draw on contributions from disciplines, such as social psychology,
conversation analysis, and sociolinguistics. The more we try to model humans
and also go beyond task-oriented dialogue, the more relevant such contribu-
tions are likely to become. Furthermore, with new modalities involved, the
handling of miscommunication not only caused by speech but also by other
sources, such as facial expression or the combination of speech and gesture, is
a challenge that must be handled.
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1.5 Interaction Data
Interaction data are crucial in many respects when building spoken (multimo-
dal) dialogue systems. They are used to investigate aspects of how humans
interact with each other or with a (simulated) system as well as to evaluate,
e.g., how well users perform with a (simulated) system, how they perceive the
system, and to which extent they like it.

As already pointed out in Section 1.3 several of the chapters in this book re-
port on data collected for evaluation purposes. There are also several chapters
that use data collection for development purposes. Chapter 2 includes data col-
lection with a prototype to investigate what users find natural when interacting
with an MP3 player. Chapter 3 reports on human–human data collected from
role-play sessions to study negotiation strategies. In Chapter 6 human–system
data have been collected to study non-understanding and error recovery strate-
gies. Chapter 10 by Gruenstein, Niekrasz, and Purver has its full focus on an-
notation tools and annotation of multiparty human–human meeting data. Such
tools and annotations support interaction studies which again may support and
improve the development of systems. Chapter 11 by Forbes-Riley and Litman
reports on both human–human and human–system tutorial dialogues which
may be compared and form the basis for improvement of the tutoring system.

Data will continue to be an important source of information for driving the
development and evaluation of spoken (multimodal) dialogue systems. A prob-
lem about data is that they are laborious and time-consuming to collect and
analyse. The existence of annotation tools may greatly facilitate and speed up
the data analysis and information extraction process. However, as is apparent
from Chapter 10, the construction of such tools is a project in itself. Another
related challenge which comes prior to the use of an annotation tool, is to find
out and decide on which phenomena we actually want to look for in the data,
i.e., the phenomena we need knowledge about to build better systems. Having
decided on that, we must construct annotation schemes if there are no suitable
existing schemes. Then we can start to use an annotation tool if one is available.

2. Overview of the Individual Chapters
In the previous section, we have already briefly touched upon all chapters in
this book. In the following we provide a slightly more detailed overview of
the contents of each chapter. Very roughly we may divide the chapters into the
following categories although many chapters address aspects from more than
one category and all chapters deal with discourse and dialogue aspects.

Spoken dialogue systems (Chapters 1–3)

Evaluation (Chapter 4)

Miscommunication (Chapters 5–6)
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Dialogue management (Chapters 7–9)

Corpus work (Chapters 10–11)

2.1 Spoken Dialogue Systems
Chapters 1–3 deal with differences and challenges in commercial and research
systems with a focus on discourse and dialogue aspects.

In Chapter 1 Pieraccini and Huerta discuss spoken dialogue systems from
a commercial as well as a research point of view in terms of characteristics and
main differences.

While commercial systems have a primary focus on robustness, usability
and cost effectiveness, research systems aim at achieving natural interaction
by allowing unconstrained input and full mixed-initiative dialogue. Commer-
cial systems to a considerable degree build on standards and draw on various
tools and platforms. They are characterised by constrained and directed dia-
logue, limited initiative, and a demand for completeness, i.e., the system be-
haviour must be completely and explicitly specified regarding every possible
situation that may occur. Thus the typical dialogue model can be described as
a graph with user input type on the edges and dialogue states with pre-defined
prompts in the nodes. By contrast research systems typically operate with an
unrestricted and open-ended input space which makes completeness impossi-
ble.

The different focus points of commercial and research systems influence the
form of the dialogue manager. Commercial systems typically use a finite state-
based dialogue manager. On the research side dialogue management for more
complex applications is being investigated. Various kinds of inference-based
dialogue managers have been developed, e.g., agenda-driven dialogue man-
agers, and there is research in dialogue managers based on statistical learning
of dialogue strategy. However, prototypes based on such dialogue management
approaches have not yet demonstrated the level of usability needed for com-
mercial use.

Wang and Hamerich describe in Chapter 2 an in-car speech-controllable
MP3 player. The system goes beyond current audio systems that only accept
a few spoken commands like “next title” or “previous CD”. The presented
system allows, e.g., the selection of track, album, artist, genre, or composer via
spoken input which becomes important with the rapidly increasing number of
titles that can be stored on MP3 devices.

The described type of speech-enabled in-car MP3 player is not yet available
as a commercial product but, as it appears from this chapter, prototypes are
being built to obtain experience that will support the eventual development of
an actual product. Two successive multimodal prototypes are presented and a
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third is reported to be under development building on experience from the two
previous ones.

There are several challenges related to the development of in-car systems
in general, e.g., that speech recognition must work in noisy environments and
that computing resources are limited compared to server-based solutions. For a
speech-enabled MP3 player there are a number of additional challenges to cope
with. A major one is the problem of pronunciation of foreign titles. Sometimes
a title even mixes words from several languages. Another challenge is – like
for new applications in general – the interaction design. What does the user
find natural and intuitive? The described prototypes served among other things
to explore this issue.

In Chapter 3 Traum, Swartout, Gratch and Marsella address challenges
in non-team negotiation dialogue. The system context is a multimodal negoti-
ation dialogue trainer for military people who can train their negotiation skills
by engaging in dialogue with a virtual human doctor.

Focus is on a dialogue model originally developed for virtual humans and al-
lowing for multimodal, multiparty conversational team interaction. This model
which is based on a layered information state approach, is described, including
its extension to allow for non-team negotiation dialogue. Non-team negotiation
introduces a number of new issues that must be dealt with, compared to what
the dialogue model used as point of departure can handle. For instance, the
interlocutors do not necessarily share a common goal and have trust in each
other. Moreover, they may or may not see any benefit from engaging in negoti-
ation. Three different orientations towards negotiation are discussed, including
avoidance, win-lose, and win-win. In dialogues from a number of role-play
sessions with one person playing a military commander and another playing
the doctor, examples of all three orientations were found. Extensions to the di-
alogue model to handle these different negotiation strategies are presented, in
particular how to model trust, initiative-taking, and avoidance to do something.

Two example dialogues with the implemented system show unsuccessful
and reasonably successful negotiation with the doctor. The implementation in-
cludes a trace facility which automatically annotates how each input turn af-
fected the virtual doctor’s trust, beliefs and choice of strategy. This supports
the subsequent review of the negotiation interaction.

2.2 Evaluation
Chapter 4 is the only chapter that is entirely devoted to evaluation.

Möller addresses in this chapter the evaluation of quality of telephone-based
spoken dialogue systems. Such evaluation involves both subjective and instru-
mental, objective measurements. Thus the chapter provides an overview of
main issues involved in collecting subjective user data and presents a set of
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interaction parameters that may be extracted from human–system interaction
log files to obtain quantitative measures. The use of subjective evaluation and
interaction parameters has been recommended by the ITU.

Subjective evaluation is frequently done by having users interact with the
simulated or implemented system under controlled laboratory conditions.
Before and after interaction with the system users may be asked to fill in a
questionnaire which serves to collect subjective user data. A multidimensional
analysis of questionnaire results carried out within the European INSPIRE
project is reported and results are compared to dimensions obtained from
a number of other experiments. This revealed five perceptual dimensions
underlying the users’ judgements in the experiments, i.e., acceptability, com-
munication efficiency, cognitive effort, personality, and smoothness.

The chapter continues to characterise five parameter categories based on lit-
erature studies, i.e., parameters related to dialogue and communication, meta-
communication, cooperativity, task, and speech input. The parameters belong-
ing to each category are further detailed and explained in an appendix. The
set of parameters were evaluated in the reported INSPIRE experiment to de-
termine their relationship to subjective user judgements. The correlation was
found to be rather low and insufficient to predict overall system quality. Sev-
eral PARADISE-style quality prediction models were subsequently applied to
INSPIRE data using different sets of interaction parameters. In all cases results
were found insufficient to replace users’ subjective judgements of quality.

2.3 Miscommunication
Chapters 5 and 6 address miscommunication. Actually Chapter 7 also to some
extent addresses miscommunication but we have chosen to include it under the
dialogue management category.

In Chapter 5 McTear discusses miscommunication in spoken dialogue sys-
tems and why we should bother about handling it. Miscommunication has been
addressed by many other disciplines than spoken dialogue. However, there has
been little exploitation of research results from these areas although some of
the research would seem truly relevant, such as research in cross-cultural and
inter-gender miscommunication, conversational analysis, and text-based nat-
ural language interfaces. Within the area of spoken dialogue, miscommunica-
tion has been dealt with mainly at the level of recognition errors although there
are several other potential error sources, such as out-of-domain utterances or
the use of grammar constructions not included in the system.

The best approach to miscommunication is to prevent it from occurring,
to the extent possible, through good design. However, there will always be a
need to keep an eye on miscommunication in order to predict it, if possible,
and perhaps change dialogue strategy to avoid, or at least to detect, an error



Trends and Challenges in Discourse and Dialogue xxvii

when it occurs and then recover from it. In a multimodal system conflicting
information from different modalities may add to error handling complexity.

Error handling is not easy, but errors tend to negatively affect task success.
Thus various ways exist in which to deal with errors, e.g., by explicitly con-
firming user input to detect misunderstandings immediately or by asking the
user to speak more clearly if input was not understood. How to approach error
handling depends largely on the type of interaction and its context. For in-
stance, error handling may be important in banking systems requiring precise
information to achieve task success, whereas in games miscommunication may
be part of the game itself and just pose an additional challenge.

In Chapter 6 Bohus and Rudnicky present results on non-understanding
errors and the use of ten different recovery strategies from an experiment with
a telephone-based mixed-initiative conference room reservation system. Forty-
six subjects carried out up to ten scenarios each. Subjects were divided into two
groups since two conditions (control and wizard) were to be tested. In the con-
trol condition the system randomly selected an error recovery strategy while
in the wizard condition a human who could hear what users said, selected the
strategy. The purpose was to enable comparative evaluation of the ten recovery
strategies and to see if a non-random policy for choice of recovery strategy is
likely to improve system performance.

A comparison of the performance of the ten recovery strategies in the control
condition is provided. The best one turns out to be the strategy that just ignores
the non-understanding and advances the dialogue trying to find other ways in
which to achieve the needed information. The second best strategy provides
help with examples of what can be said.

A comparison of the two test conditions is also reported. It shows that an
informed recovery policy is likely to yield a better performance than a ran-
dom policy. On this background the chapter continues to look at data-based
prediction of the likelihood of success for each recovery strategy. Based on
the predictors two policies for recovery are proposed, i.e., maximising recov-
ery rate and maximising recovery efficiency. First results indicate that these
policies may perform better than the wizard policy.

2.4 Dialogue Management
Chapters 7–9 address particular aspects of dialogue management.

Skantze describes in Chapter 7 the discourse modeller Galatea which has
been developed as part of the Swedish Higgins spoken dialogue system. The
Higgins task domain is pedestrian city navigation and guiding. The architecture
of Higgins is described, in particular the components which communicate di-
rectly with Galatea, i.e., a semantic interpreter that provides input to Galatea,
and an action manager which together with Galatea constitutes the dialogue
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manager. The core tasks of Galatea are to handle resolution of ellipses and
anaphora and to keep track of the grounding status of information exchanged
during a dialogue. It is described how Galatea resolves ellipses and anaphora
and how it models grounding information by storing confidence scores for con-
cepts mentioned by the interlocutors during a dialogue.

The Higgins system is a testbed serving to investigate error handling tech-
niques in spoken dialogue systems. Thus approaches to error handling used in
Higgins and, in particular, in Galatea are illustrated and discussed, including
early as well as late error detection, fragmentary clarification, and display of
understanding.

Performance results from an evaluation of Higgins and Galatea involving
16 naive users in a scenario-based laboratory setting is reported. These results
look promising no matter if recognition errors occur or not.

Williams, Poupart and Young consider Partially Observable Markov De-
cision Processes (POMDPs) in Chapter 8. Whereas traditional approaches to
dialogue management track a single hypothesis for the state of the dialogue,
POMDPs maintain a distribution over many possible states. This distribution
is beneficial because it allows speech recognition errors and non-deterministic
user behaviour to be tracked robustly. The chapter first provides some back-
ground information on POMDPs, and then explains dialogue modelling using
POMDPs in more detail.

The POMDP approach is compared with an approach which uses Markov
Decision Processes (MDPs). Unlike POMDPs, an MDP tracks a single hy-
pothesis for the state of the dialogue. Based on a test-bed-simulated dialogue
management problem from the travel domain in which a user wants to buy
a ticket to travel between two cities, it is shown that the POMDP approach
performs better than the MDP approach.

Using the same test-bed problem the authors also show how handcrafted
dialogue managers, i.e., dialogue managers in which designers have specified
actions directly, can be improved. The advantage of this approach is that the hu-
man designer can build the handcrafted dialogue managers without regard for
confidence score information, and the POMDP approach will determine how to
best account for confidence score information as it executes the handcrafted di-
alogue manager. Experiments confirm that improvements are obtained in prac-
tice.

In Chapter 9 Denecke and Yasuda deal with dialogue management for
restricted-domain question–answering systems. Their focus is on how to de-
cide if the user provided enough information in a question or whether and how
s/he should be prompted for additional information.

The approach they propose is to let the dialogue manager choose one among
a predefined set of action types. Action type selection depends on the dialogue
context which is based on extracted keywords from user input and retrieved
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documents in response to this input. The selected action type is communicated
to an instance-based generation component which realises it by retrieving an
utterance annotated with the right type from a corpus and replacing content
words to fit the actual context.

The approach has been implemented in a restricted-domain question–
answering system concerning information on travel destinations in Japan, such
as events, food and sightseeing. The Wizard-of-Oz collection and annotation
of the corpus used by the generation component is described. The representa-
tion of dialogue context as a bag-of-words and the representation of how well
the retrieved documents answer the user’s question is presented. Furthermore
alignment is described. Alignment is used to determine whether an answer
candidate should be considered a valid answer to the user’s question.

Based on the mentioned representations machine learning is used to learn
the dialogue management function. Support vector machines are used to clas-
sify the current dialogue state to determine the next action to be taken.

2.5 Corpus Work
Chapters 10 and 11 mainly deal with corpora, including tools for annotation
and analysis and the use of corpora for developing and improving practical
applications.

Gruenstein, Niekrasz and Purver present in Chapter 10 a generic set of
tools for representing, annotating and analysing multiparty discourse. These
tools contribute to the larger goal of building an automatic office assistant that,
e.g., can summarise meetings and point to relevant documents. A step towards
this goal is to achieve an understanding of how people can best be assisted
in browsing or reviewing meeting contents. To this end annotation of, e.g.,
structure in meeting data is important.

The authors describe the architecture developed for working with multiparty
discourse. This description includes a semantics-based multimodal discourse
ontology, its associated ontology programming interface, and the audiovisual
toolkit NOMOS for annotation of media with ontological structure. Three tools
developed on top of this architecture as NOMOS plugins are presented, i.e., a
topic and action item annotation tool, a feature extractor and visualiser, and a
meeting browser.

The topic and action item annotation tool has been used by two annotators to
do topic segmentation and annotation of action item subdialogues of two meet-
ing corpora. The annotation process is explained and inter-annotator agreement
is evaluated. The rather low agreement reflects that there are various problems
related to audiovisual multiparty discourse annotation.

In Chapter 11 Forbes-Riley and Litman address the development of
more effective spoken dialogue tutoring systems by annotating and analysing



xxx RECENT TRENDS IN DISCOURSE AND DIALOGUE

corpora of human–human and human–computer tutorial dialogue. In the pre-
sented study focus is on student certainty and the subsequent tutor dialogue
acts in the human–human corpus and what can be learned from an analysis of
possible dependencies.

Both corpora concern physics problems. The human–computer corpus was
collected with the ITSPOKE spoken dialogue tutoring system which is meant
to be improved on the basis of what is learned in the presented study. The
collection of the human–human corpus with university students and a human
tutor, and the annotation of student certainty and tutor dialogue acts, such as
positive or negative feedback or long or short questions in return to answers, is
described.

The annotated human–human tutorial dialogues are represented as bigrams
of student–tutor turns. Chi Square analysis is then used to identify statistically
significant dependencies between student certainty and tutor dialogue acts. The
analysis process is explained and results are shown.

The correlation between dependent bigrams and student learning is analysed
to investigate how the tutor’s dialogue act strategies correlate with learning.
A similar analysis is performed on the human–computer corpus with different
results. This indicates that a given human–human strategy may have a different
relationship to learning in human–computer dialogue.

3. Readership
The primary target group of this book are academic and industrial researchers
in the field of spoken dialogue and discourse. However, we believe that the
book may actually be of interest to the speech and language technology com-
munity at large. Graduate students and Ph.D. students may also benefit from
reading selected chapters from the book.

The chapters vary considerably regarding the level of expertise required in
advance to benefit from them. However, most chapters start with a state-of-the-
art description from which all readers may benefit.

Chapter 1 on research and commercial dialogue systems and Chapter 5 on
miscommunication are of an introductory character, deal with quite broad topic
areas, and are accessible to a wide audience. This is to a high degree also the
case for Chapter 4 on evaluation of telephone-based spoken dialogue systems.

Chapter 3 on negotiation training, Chapter 6 on non-understanding recovery
strategies, Chapter 7 on discourse modelling and error handling, and Chapter
10 on meeting structure annotation require some background knowledge in the
addressed topic areas for the reader to fully appreciate the contents. This is also
true for Chapter 11 on tutoring systems and student certainty where it will be
an advantage to be familiar with Chi Square and linguistic analysis.
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Chapter 8 on Partially Observable Markov Decision Processes and Chapter 9
on dialogue management in question-answering concern very specific topics
and require, not least, a good deal of statistical background from the reader.

The chapters contain a number of abbreviations and acronyms. To facilitate
reading we have added a list of such abbreviations and acronyms towards the
end of the book right before the index.
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WHERE DO WE GO FROM HERE?
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Abstract The spoken dialogue industry has reached a maturity characterised by a verti-
cal structure of technology vendors, platform integrators, application develop-
ers, and hosting companies. At the same time industrial standards are pervading
the underlying technology and providing higher and higher levels of interoper-
ability. On the one hand commercial dialogue systems are largely based on a
pragmatic approach which aims at usability and task completion. On the other
hand, spoken dialogue research has been moving on a parallel path trying to at-
tain naturalness and freedom of communication. However, given the constraints
of the current technology, the evolution of the commercial path shows that natu-
ralness and freedom of expression are not necessarily a prerequisite for usability.
The difference between the two goals has been influencing a parallel evolution
of the architectures and in particular of the dialogue management abstractions.
We believe it is the time to get a high level perspective on both lines of work,
and aim at a synergistic convergence.

Keywords: Spoken dialogue system; voice user interface; dialogue manager

1. Introduction: Overview of Dialogue Systems
There are different lines of research in the field of spoken dialogue. Some
researchers attempt at understanding, and possibly replicating, the mechanisms
of human dialogue through linguistically motivated studies on human–human

1
L. Dybkjær and W. Minker (eds.), Recent Trends in Discourse and Dialogue, 1–24.
c© 2008 Springer Science + Business Media B.V.
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corpora. Others are interested in general design principles that, once applied,
would result in usable human–machine user interfaces based on speech recog-
nition and speech synthesis technology. Then, there is spoken dialogue system
engineering (McTear, 2004), which aims at developing programming styles,
models, engines and tools which can be used to build effective dialogue ap-
plications. The three lines of research are, in a way, orthogonal and comple-
mentary. The focus of the first is on understanding human communication,
the second on designing the interface for usable machines, and the third on
building those usable machines. The topic of this chapter is concerned with
the latter, namely the engineering of spoken dialogue systems. However, every
discussion on the engineering of dialogue systems would be flawed if we did
not take into consideration both the nature of human–human dialogue – as
this is the most efficient realization of spoken dialogue available in nature –
and the goal of usability. Dialogue systems can be further studied in accor-
dance to other dimensions, for example modality (e.g., speech only, audiovi-
sual, multimodal), input sensors (e.g., telephone, microphone, keyboard, joy-
stick, touch screen, gesture capture), target platform (e.g., embedded, server-
based), application domains (e.g., pervasive help, personal assistance, transac-
tional systems, command and control) and many others. We believe that these
dimensions are complementary to the focus of this chapter.

The goal of usability – i.e. building machines that are usable by untrained
users – is often confused with that of building human-like conversational sys-
tems. This is based on the underlying tacit assumption that a machine that
approximates human behaviour, from the linguistic point of view is certainly
more usable than one that does not. Although possibly true in the limit, this as-
sumption is often misleading, especially if we consider that the performance of
spoken language technology1 today is still far from near-human performance.
However, most of the research carried out during the past decade has been
directed towards unconstrained natural language interactions based on the as-
sumption that naturalness and freedom of expression are the essential goals to
pursue, and usability would automatically follow from having reached these
goals.

The limitation of current spoken language technology is a fact we have
to live with. Thus, if we undertake the goal of building usable systems with
that limitation, we would find that naturalness and freedom of expression may
actually hinder usability (Oviatt, 1995; Williams and Witt, 2004) for a large
number of useful applications. For instance let us consider spoken language
understanding technology. In spite of the advances of the past decade, even in

1With the term spoken language technology we refer to all the technologies that attempt the replication of
human spoken language skills by machines, including speech recognition, spoken language understanding,
speech to speech translation, speech synthesis, and text to speech.
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well-defined domains, unrestricted understanding of speech is still far to be on
a par with humans. So, any spoken language system that encourages free and
natural user interactions is bound to a non-insignificant level of understanding
errors (Sagawa et al., 2004; Bohus and Rudnicky, 2007). Moreover, as of today,
there are no effective error recovery dialogue strategies2 available for uncon-
strained natural language interactions. Conversely there are several types of
transactional applications that achieve high usability with interactions that are
not natural and free. After all call centres often adopt scripts to be followed
by their customer service representatives (CSR) which do not leave much free-
dom to callers.3 Most of the applications in this category are characterised by a
domain model that is well understood by the user population. For instance, the
model for ordering pizzas is known to most of the users: a number of pies of a
certain size (small, medium, or large) with a selection of toppings (mushroom,
pepperoni, etc.) The same applies to the domain of flight status information:
flights can be on time, late, or cancelled, they arrive and depart daily from air-
ports which serve one or more cities and can be identified by a number or by
their itinerary and time. All of this is generally well understood by most of the
users of commercial flights. Banking, stock trading, prescription ordering, and
many other services belong to the same category.

Generally, when the domain model is quite simple and known by the users,
as in the above cases, applications can be implemented in a structured dia-
logue fashion, generally referred to as directed dialogue. Directed dialogue,
even if seemingly more restrictive from the point of view of the user, can at-
tain much higher usability and task completion rates than free form interaction
does, given the limitations of the current technology. In fact, when users are
prompted to provide specific pieces of information, the system can activate
grammars designed to collect exactly that information. Moreover, as discussed
in Oviatt (1995), user guidance reduces user disfluencies. Thus, the combina-
tion of user direction, strict grammars, and less disfluent speech can attain quite
high recognition accuracy. On the other hand, a more open interaction would
increase the space of possible user expressions at each turn, often causing a
reduction of the recognition accuracy. Furthermore, without direct guidance,
most users will be lost and would know neither what to say nor what the capa-
bilities and limitations of the system are.

The concept that well-structured directed dialogue strategies may out-
perform natural language free-form interactions was realized by speech

2One of the problems arising when trying to implement error recovery in unconstrained speech is the au-
tomatic detection of recognition errors. In fact, today’s speech recognition confidence measures are still
highly unreliable, especially when one attempts to apply them to portions of an utterance. Without viable
error correction, interaction with machines may be extremely frustrating for the user.
3As a matter of fact, human–human flight reservation generally follows a precise script that is dictated by
the order of the entries in the CSR database.



4 RECENT TRENDS IN DISCOURSE AND DIALOGUE

technology vendors during the early and mid-1990s. The development of a
spoken dialogue market during those years led to the rise, in the late 1990s, of
a well-structured industry of speech engines, platform and tool vendors, appli-
cation developers, and hosting companies, together with an increased attention
to the industrial standards. In fact several standards are today governing the
speech industry, such as VoiceXML 2.0,4 MRCP,5 SRGS,6 SSML,7 CCML,8

and EMMA.9 Mainly driven by the VoiceXML standards, the speech and the
Web world started to merge, and the benefits of this standardisation trend took
a momentum amplified by the simultaneous emergence of Web standards (e.g.
J2EE10 and JSP11).

From a different point of view it is interesting to notice that the research
community has often adopted dialogue approaches based on general principles
(e.g. Grice, 1975) that once coded give machines a reasonable behaviour for
reacting to different dialogue situations. Then, in order to cope with the limi-
tations of the technology, research started falling back to more restrictive dia-
logue strategies. In contrast, the commercial community started from a prag-
matic approach, where each interaction is practically designed in the minimal
details by voice user interface (VUI) experts (Barnard et al., 1999).

After mastering the crafting of directed dialogue applications, the commer-
cial community is moving now towards more free-form types of interactions.
One example of that is offered by a category of applications where directed
dialogue cannot be applied. Applications of this type are characterised by a do-
main model which is complex and unknown to the majority of users. Help desk
applications, for instance, fall in this class. For example, a directed dialogue
system for routing callers to the appropriate computer support may prompt
the user with: Is your problem related to hardware, software, or networking?
Unfortunately the vast majority of users would not know which of the three cat-
egories would apply to their problem. A solution to that would be to provide a
menu that includes all possible problems, but that menu would be too long to

4http://www.w3.org/TR/voicexml20/.
5Media Resource Control Protocol: a protocol for the low level control of conversational resources like spe-
ech recognition and speech synthesis engines: http://www.ietf.org/internet-drafts/draft-shanmugham-mrcp-
06.txt.
6Speech Recognition Grammar Specification: a language for the specification of context-free grammars
with semantic attachments: http://www.w3.org/TR/speech-grammar/.
7Speech Synthesis Markup Language: a language for the specification of synthetic speech:
http://www.w3.org/TR/2004/REC-speech-synthesis-20040907/.
8Call Control Markup Language: a language for the control of the computer-telephony layer:
http://www.w3.org/TR/ccxml/.
9Extensible MultiModal Annotation: a language for the representation of semantic input in speech and
multimodal systems: http://www.w3.org/TR/emma.

10Java Platform, Enterprise Edition is the industry standard for developing portable, robust, scalable and
secure server-side Java applications: http://java.sun.com/javaee/index.jsp.

11Java Server Pages technology provides an effective way to create dynamic web content:
http://java.sun.com/products/jsp/.
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be practical. In other words, the underlying domain model, unlike that of pizza
orders and flight information, is largely unknown by the user population. The
solution to this problem consists in letting callers express themselves freely,
and back the system with a statistical classifier able to assign user utterances
to one of several predefined categories. In other words the system is charged
with the burden of mapping user expressions to the domain model, and not
the users themselves. This technique, known as How May I Help You (Gorin
et al., 1997), statistical call routing, or statistical natural language understand-
ing (Chu-Carroll and Carpenter, 1999; Goel et al., 2005) is not more than a
very simple form of language understanding which combines the robustness
of a structured approach (a limited number of categories, or routes) with the
flexibility of natural language (an open prompt leading to a large number of
possible user expressions). In fact, using this technology, the dialogue can still
be structured in a directed dialogue manner, because the output of the interac-
tion is going to be one of a predefined number of categories.

The goal of this chapter is to give a high level view of the domain of dia-
logue systems both in the research as well as in the commercial domain, with
a focus on the problem of dialogue management. The rest of this chapter is or-
ganised as follows: Section 2 describes the importance of dialogue control and
authoring expressiveness in commercial dialogue applications and the princi-
ple of VUI completeness. Section 3 provides a working definition of dialogue
management. Section 4 gives a detailed overview of the basic architectures
used for building dialogue applications. The following sections (5, 6 and 7)
describe the main approaches to dialogue management, namely programmatic,
finite state, and inference based. Section 8 provides an overview of the lat-
est trends in commercial dialogue systems, and finally Section 9 reports our
closing conclusions.

2. VUI Completeness
The need for a detailed control of the VUI is thus an important factor driving
the architectural and engineering choices in commercial dialogue systems. We
call this the VUI-completeness principle: the behaviour of an application needs
to be completely and explicitly specified with respect to every possible situa-
tion that may arise during the interaction. No unpredictable user input should
ever lead to unforeseeable behaviour. Only two outcomes are acceptable, the
user task is completed as specified in the design specification, or a fallback
strategy is activated (e.g. escalation to an operator).

In order to ensure that an application is VUI-complete, its behaviour needs to
be specified for each possible situation, or class of situations. Today, a complete
VUI specification is standard procedure in commercial deployments and is
generally represented by a graph that describes all the possible dialogue states,
complemented by tables that describe all the details of each state. Transitions
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between dialogue states are described with conditions predicated on the user
inputs and other pieces of information (e.g. previous user inputs, back-end re-
sponse and personal user information). The precise wording of system prompts
is also specified in the design, along with an indication of the type of utterances
accepted at each turn. The VUI specification document is then handed to a team
of developers who implement the application using the platform of choice. In
some situations the VUI designers use advanced authoring tools that lead to the
complete development of the application without, or with limited, intervention
of software engineers and developers. In order to reduce development costs, it
is thus important to guarantee a direct mapping between the formalisms and
abstractions used by the VUI designers and the programming models available
to the developers. This is the reason why most commercial dialogue managers
follow the same abstraction utilised in the VUI specification.

Research systems, on the other hand, are typically designed to manage di-
alogue in situations where the product space of inputs, dialogue states, and
outputs makes an explicit and exhaustive enumeration of all the possibilities
impossible or impractical at best. This is due in part to the aim that the re-
search community has towards handling unrestricted natural language input
and mixed-initiative12 dialogue control. On the other hand, an explicit enumer-
ation (e.g., expansion into a deterministic graph) of the possible inputs as well
as the possible dialogue transition states is required in commercial systems to
establish a complete VUI specification that can be signed off by the client who
pays for the development of the system itself. It is in general uncommon to find
research systems which present full VUI-completeness.13

2.1 Control and Expressiveness
In order to allow developers to implement detailed VUI specifications, the
programming paradigm adopted by the dialogue manager or authoring tools
should allow a fine control of the system behaviour. However, a too low-level
development paradigm may result in prohibitive development costs for large
and complex applications. Hence the programming paradigm needs also to be
expressive enough to allow implementing complex behaviour in a simple and
cost effective way. These two features are often competing, since in order to
guarantee more expressiveness the dialogue manager has to allow for sophis-
ticated built-in behaviour, which may be hard to bypass if one wants to attain

12The term mixed-initiative is generally used to refer to those dialogue systems that allow the user, as well
as the system, to change the course of the interaction at any point in the dialogue.

13In the DARPA Communicator evaluations, participant sites implemented systems with common require-
ments on the travel planning problem. Had a VUI-complete specification been set forth by the community as
a joint effort, part of the evaluation would had simply consisted in verifying application compliance against
the specification document. Still the user experience and the usability of the interfaces would have played
an important role in the differentiation and evaluation of the systems.
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a detailed control of the interface. An effective programming and authoring
paradigm for dialogue systems is thus the result of a trade-off between control
and expressiveness. This can be summarised by the following principle: simple
things should be simple and complex things should be possible.14

3. Dialogue Management
The design of a proper dialogue management mechanism is thus at the core
of dialogue system engineering. The study of better dialogue managers and
proper dialogue engineering aims mainly at reducing the application develop-
ment costs. But it is also a way to move towards more sophisticated human ma-
chine interactions, since it is only with proper engineering of dialogue systems
that we can raise the complexity threshold that separates what is practically
realizable from what is not.

There is not an agreed upon definition of what a dialogue manager is; dif-
ferent systems described in the literature attribute different functions to it.
Some of these functions are: integrating new user input, resolving ambigui-
ties, confirming and clarifying the current interpretation, managing contextual
information, communicating with the back-end, managing speech recognition
grammars, generating system outputs, etc. In fact, the minimal functionality
required by a dialogue manager covers two fundamental aspects of all inter-
active applications: keeping track of session states and deciding what the next
action for the system to take is. Of course there are many ways of coding these
two functions in order to achieve a desired interactive behaviour. The rest of
this chapter will describe some of them.

4. Reference Architectures: Research
and Commercial

In order to describe different approaches to dialogue management, it is impor-
tant first to define, at a high level, the architecture of spoken dialogue systems.

Figure 1 shows a general functional architecture of a dialogue system,
mostly used in research prototypes. We refer here and in the following to
telephone-based systems. However, some of the concepts expressed in this
chapter can be generalised to other types of system that do not make use of
telephone communication, such as embedded systems for mobile devices and
for automobiles. While the description of how some of these principles ap-
ply to different non-telephony systems is beyond the scope of this chapter, we
should mention that commercial systems, especially in the embedded area, are

14This maxim is attributed to Alan Kay.
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Figure 1. Functional architecture of a dialogue system mostly used in research prototypes.

moving towards multimodal applications. Applications where speech is not the
only modality, but is integrated with haptic and visual interfaces, are becoming
more and more common, and certainly need more sophisticated architectures
than the ones described here.15 A discussion on some of the issues related to
multimodal systems can be found in Pieraccini et al. (2005).

In the most common configuration of a spoken dialogue system architec-
ture, input speech is collected via a telephone interface and dispatched to the
speech recognition engine which provides one or more recognition results (for
instance the n-best recognition results). Each recognition result is then fed to
a natural language understanding processor which extracts the semantics of
the utterance. A formal representation of the semantics, generally a structured
set of attribute-value pairs, is then passed on to the dialogue manager. The di-
alogue manager, based on the current utterance semantics, and on the stored
contextual information derived from previous turns, decides the next action
to take according to a dialogue strategy. The most obvious action performed
by the system as a response to a user utterance is a system utterance, gen-
erally referred to as prompt, which can be generated as text and transformed
into speech by a text-to-speech engine, or selected from a set of pre-recorded
samples.16 Other types of action performed by the dialogue manager include
interactions with the back-end system, or any other type of processing required
by the application.

The above described architecture has been implemented in many different
forms in research. Of particular interest is the Galaxy architecture (Seneff et al.,

15Examples are SmartKom (http://smartkom.dfki.de/) and Embassi (http://www.embassi.de).
16High-quality prompts are today obtained by splicing pre-recorded phrases with TTS generated content,
using concatenative speech synthesis.
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1999) which was used in the DARPA Communicator17 project and allowed the
interchange of modules and plug-and-play across different research groups.

One thing to notice in the above described architecture is that the specific
language models used by the speech recognition and natural language under-
standing engines are supposed to be constant throughout a whole session. In
fact, one of the basic assumptions behind most research prototypes is that the
system should be able to understand all the possible expressions defined by
the language model at any point during the interaction. However it is clear that
there is a correlation between the distribution of possible utterances and the di-
alogue state or context. Thus in order to improve system performance, the dia-
logue manager can change the parameters of the language model and language
understanding depending on the current dialogue context. Several systems did
implement this feedback loop with resulting improved performance (Xu and
Rudnicky, 2000).

Commercial system architectures, instead, evolved in a different way. The
basic assumption on which most of the commercial deployed systems were,
and still are, based can be expressed by the following statement: properly
designed prompts can effectively control the space of user expressions. Thus,
based on this assumption, there is no need for the system to be able to under-
stand, at each turn, all the possible expressions that users could say, since the
user will mostly speak what is suggested by the prompts. Users are in fact di-
rected (thus the term directed dialogue) and guided to speak exactly what the
system expects. It is clear how this assumption, if true, can potentially allow the
attainment of very high task completion rates by limiting the unknowns. Under
this assumption, commercial dialogue systems provide the speech recogniser
with grammars that are specifically designed for each turn of the interaction.
Each grammar – typically a context-free grammar with semantic attachments –
is specifically designed to accept the utterances that are expected to be possible
user reactions to the specific prompt played at that particular turn. So, instead
of a generic prompt like Hello, this is XYZ flight status information line, how
can I help you today? commercial dialogue system designers use more specific
prompts such as Are you interested in arrivals or departures? or From which
city is the flight departing? Prompts and grammars, thus, need to be designed
together.

The benefit of using restricted grammars in directed dialogue applications
becomes evident when looking at the error control logic typically adopted by
commercial systems. In fact even with very restricted grammars there is always
a chance for the recogniser to produce erroneous interpretations, or for the
user to speak utterances outside the domain. Thus in case of poor recognition

17http://communicator.sourceforge.net/.
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scores, commercial dialogue systems direct users to correct presumably erro-
neous interpretations by using very strict prompts, such as: I think you said
Austin, is that correct? Please say yes or no. And since the system cannot af-
ford to confuse a yes with another phonetically similar word at this point in
dialogue (misrecognitions in correction subdialogues would lead to enormous
user frustration), the grammar associated with the confirmation prompt is typi-
cally restricted to yes/no utterances and a reasonable number of synonyms and
command words (such as help and operator).

Early commercial dialogue systems were built using proprietary architec-
tures based on IVR (Interactive Voice Response) platforms. Soon, the speech
application development community realized the importance of industrial stan-
dards and started to create recommendations to guarantee interoperability of
platforms and engines. After the introduction of VoiceXML 1.018 in year 2000,
conversational systems started to conform to a general Web architecture, such
as the one shown in Figure 2. The convergence of speech and Web technologies
(the so called Voice Web) has allowed the speech industry to leverage existing
Web skills and resources, and reduce the need for specialised developers.

The core of commercial dialogue systems exemplified by Figure 2 is the
voice browser which accepts documents written in a markup language specific
for speech applications, such as VoiceXML. The voice browser exchanges in-
formation with a Web server using the HTTP protocol in analogy with the
browser and server in traditional visual Web applications. VoiceXML markup
documents instruct the browser to activate the speech resources (speech re-
cognition, TTS, prompt player, etc.) with a specific set of parameters, such as
grammars for the speech recognition engine, prompts to be synthesised by the
text-to-speech system, or audio recording to be played. Once the user’s speech
has been recognised, and the recognition results returned to the browser in the
form of a structured set of variables, the browser sends them back to the Web

Figure 2. Typical architecture of commercial dialogue system.

18Voice eXtensible Markup Language.



Where Do We Go From Here? 11

server, together with the request for another VoiceXML document. The Web
server then replies by sending the requested document to the browser, and the
interaction continues in this fashion.

Using static VoiceXML documents, the dialogue manager function is actu-
ally distributed across the various VoiceXML pages, as in a static visual web-
site, the navigation is distributed across the collection of HTML documents.
In fact each document includes instructions for the browser to request the next
document once the current one has been executed. All the VoiceXML docu-
ments and the corresponding resources (such as grammars, prompts, etc.) are
typically stored statically on the Web server and served19 to the browser upon
request. However, as it happened in the visual Web world, developers found
the mechanism of encoding the whole system in static VoiceXML pages quite
limiting, and soon they started to write programs on the server for generating
dynamic VoiceXML documents. In this case the application is actually man-
aged by a program running on the application server, which acts as a dialogue
manager and that generates dynamic VoiceXML documents upon requests by
the browser. The introduction of the J2EE/JSP technology makes this process
straightforward and in line with mainstream Web programming.

Generating VoiceXML dynamically on the server has the advantage of pro-
viding the developer with more powerful computational capabilities than those
available on the voice browser client, and thus accommodating, in a more flex-
ible way, the dynamic nature of sophisticated interactions and business logic.
Moreover, there are security restrictions on the client browser that may prevent
direct access to external resources, such as back-end databases. The evolution
of server-based programming of applications brought the separation of the di-
alogue management functionality from the presentation (i.e. the activation of
speech engines, playing of the prompts, etc.), and the realization of general
purpose dialogue managers and programming models for developing speech
applications on the server.

In spite of the different architectural evolution of research and commercial
dialogue systems, the need for a powerful dialogue manager is felt by both
communities. In the next few sections we will discuss some of the available
models of dialogue manager which have been introduced in recent years.

5. Programmatic Dialogue Management
The simplest form of dialogue manager is a generic program implemented in
a procedural programming language such as C++ or Java (or as a Java servlet
in the case of Web-based architectures) that implements a dialogue application

19Voice browsers use caching strategies similar to those used by visual Web browsers. So, large grammars
may be cached on the client so as to avoid significant resource provisioning latency.
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without any underlying general interaction model. Early commercial dialogue
applications were typically developed, on the deployment platform, as native
code following a given VUI specification. Before the advent of VoiceXML and
the Web programming paradigm for voice applications, IVR vendors integrated
speech recognition engines directly in the platforms which had proprietary pro-
gramming environments or proprietary APIs.20

However, building each application from scratch becomes soon an ineffi-
cient and repetitive activity. Like in all areas of software development, vendors
tried to reduce the cost of application development by introducing libraries
of reusable functions and interaction templates, often for internal consump-
tion, but also as products that could be licensed to third parties. Libraries
were also complemented by programming frameworks, generally in the form
of sample code or templates, which could be reused and adapted to different
applications.

Dialogue modules21 developed by various speech recognition and tool
providers, constitute one of the first forms of commercial reusable dialogue
functions. Dialogue modules encapsulate all the low level activities required to
collect one or more pieces of information from the user. That includes prompt-
ing, re-prompting in case of rejection and timeout, confirmation, disambigua-
tion, etc. The collection procedure, including prompts, grammars, and logic
for standard pieces of information, such as dates, times, social security num-
ber, credit card numbers, currency, etc., was thus encoded once and for all in
pieces of reusable and configurable software. Developers could also build their
own custom dialogue modules. Thus dialogue modules became, for many, the
standard approach to directed dialogue. Applications were then implemented
with the programming model available for the chosen platform. Each state of
the dialogue flow was associated to a specific dialogue module, and the pro-
gramming model of the platform was the glue used to implement the whole
dialogue.

6. Finite State Control Management
The finite state control dialogue manager is an improvement on the program-
matic dialogue manager. The finite state control dialogue manager implements
a separation between the logic of directed dialogue and its actual specification.
The logic is implemented by a finite state machine engine which is application

20Some platforms used GUI application development environments that were originally designed for touch-
tone (DTMF) applications, and then extended to handle speech recognition and TTS. Other commercial
platforms allowed access to the functionality of the IVR and the speech recognition/TTS engines by expos-
ing a proprietary API, and allowing it to be invoked by common programming languages such as C, Java,
and Visual Basic.

21Commercialised by SpeechWorks as Dialogue Modules and by Nuance as Dialogue Objects.
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independent and therefore reusable. Thus, rather than coding their own finite
state machine mechanism directly in computer code, as in the programmatic
model, developers had to provide a description of the finite state machine topol-
ogy in terms of a graph of nodes and arcs. This can be defined as a data driven
approach. Often the topology could be derived directly from the VUI specifi-
cation. Then developers had to complement that with a set of custom functions
required by the application. Without a separation between the finite state ma-
chine mechanism and its topology, the implementation of the dialogue state
machine logic was often left to the programming skills of developers, often
resulting in an unmanageable spaghetti-like nest of if-else or case statements,
with increased debugging and maintenance costs, and made it impossible to
build applications above a certain level of complexity.

One of the obvious advantages of the finite state control management ap-
proach is that the topology of the finite state machine is generally easier to
write, debug, and maintain than the finite state machine mechanism itself.
Moreover, the finite state machine engine can allow for hierarchical and mod-
ular dialogue definition (e.g. dialogues and subdialogues). Finally, the engine
itself can be harnessed to verify the overall topology, check for obvious de-
sign and implementation mistakes, such as unreachable nodes and loops, and
provide debugging and logging facilities. More sophisticated engines can
have built-in behaviour like for instance handling specific navigation across
dialogue networks, recording usage information for personalised services, im-
plementing functions such as back-up and repeat, etc. (Pieraccini et al., 2001).

The simplest form of finite state control dialogue manager is built around
the concept of call flow developed initially for IVR systems. In its simplest
realization a call flow is a graph where the nodes represent prompts, and the
arcs represent transitions conditioned on the user choice at that particular node
(e.g. Figure 3). By navigating the call flow graph and by selecting the right
choices, the user can reach the desired goal and complete the task. The call
flow model is quite limited and breaks for complex dialogue systems since one
has to explicitly enumerate all the possible choices at any node in the dialogue.

In fact the pure call flow model is inadequate to represent even modest levels
of mixed-initiative, such as over-specification, when more than one piece of
information is given by the user in a single utterance. For instance, if asked for
the date of a flight22 in a mixed-initiative system that allows for over-specified
requests, users may instead respond with any subset of date, origin, destination,
and airline. In order to be able to handle this, the simple call flow model would
need to represent explicitly all the possible subsets of user choices (e.g. date,
date + time, date + origin, date + origin + destination) making the design and
development impractical.

22It looks like the spoken dialogue community has a penchant for applications related to flights. We hope to
see other domains of interest in the future.
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Figure 3. Example of call flow.

However, one can easily extend the concept of call flow and allow the state
machine to assume any topology, to invoke any arbitrary function (action) at
each node, and assume any arbitrarily complex condition on the arcs. Further-
more, one can allow any arbitrarily complex data structures (session state) to
be writable and readable by the actions associated to the nodes. In this new
extended form, the finite state control dialogue manager (we will refer to it as
the functional model ) has enough expressive power to represent sophisticated
directed dialogue and mixed-initiative interactions. A full functional model of
dialogue management can also allow for recursion, i.e. full dialogues speci-
fied in a functional fashion can be, themselves, used as actions and associated
to nodes of a higher level dialogue, enabling thus hierarchical description of
applications, and promoting modularity and reuse. An example of a control
graph that handles over-specified utterances is shown in Figure 4 (explained
later in this chapter). More detailed descriptions of functional models of dia-
logue management can be found in Pieraccini et al. (1997, 2001).

There are common misconceptions about the effective expressiveness and
computational power of the finite state dialogue model. In fact limited capabili-
ties with respect to more sophisticated abstractions are often wrongly attributed
to finite state models of dialogue control. These misconceptions derive from
the confusion that often exists between the functional model described above
and the simplistic call flow model which is completely described by a state ma-
chine with prompts on the nodes and choices on the arcs. In its simpler form the
call flow model is indeed, computationally, a finite state model of dialogue: i.e.
the state of the dialogue is univocally determined by the node of the call flow.
By contrast, the functional model allows arbitrary functions at each node to
manipulate arbitrary memory structures that can be shared across nodes. Thus
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Figure 4. Graph representing a functional dialogue controller able to handle over-specified
utterances. The conditions on the arcs exiting a node are verified in a left-to-right fashion. Arcs
without conditions are to be considered as having an else condition.

the extended functional model is not, computationally, a finite state model of
dialogue; it just makes use of a finite state representation – i.e. nodes and
arcs – for the dialogue control mechanism. In fact each node of the finite
state machine describing the dialogue control does not represent univocally
the state of the dialogue because we need also to take into consideration the
state of all the memory structures associated with the controller (e.g. the ses-
sion state).

A functional dialogue manager is equivalent to a procedural program with
a fixed structure based on nested conditional or case statements. The nodes
are equivalent to function calls, while the conditions are equivalent to the con-
ditional statements, and a whole dialogue is analogous to the definition of a
function. However, a functional dialogue manager specification is much easier
to author and debug than a set of nested conditional or case statements.23

6.1 Handling Mixed-Initiative in Functional
Models

A clear limitation of functional models is that they often require a complete
topological definition of the task that may be rather complex for certain types of
applications. For instance, the implementation of mixed-initiative interactions

23As a proof of this, we leave to the reader the exercise of rewriting the controller in Figure 4 as a series of
nested if/else-if/else statements.
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may result in a control graph with a large, unmanageable number of arcs. One
way to reduce the cost of designing and developing mixed-initiative dialogue
applications within the functional model paradigm consists in providing the
controller engine with a behaviour that corresponds to complex topologies,
without the need for the developer to specify those in term of nodes and arcs.
For example, in Pieraccini et al. (2001), the concept of state transition was
extended to include special GOTO and GOSUB arcs to easily implement topic
changes and digressions at any node of the dialogue. Powerful engines for
functional dialogue models can also allow for effective authoring of global
transitions that apply to whole sets of nodes.

6.2 Fixed Topology Models
One can implement functional dialogue managers that allow the developer to
specify the control graph topology (Carpenter et al., 2002). On the other hand
one could restrict the control graph to assume a fixed topology and allow de-
velopers to specify only a limited number of parameters.

The Form Interpretation Algorithm (FIA), the basis for the VoiceXML stan-
dard, is an example of a functional model of dialogue management with a
fixed topology. The topology of the FIA controller is in fact the one shown in
the example of Figure 4. The FIA topology is particularly suited for handling
overspecified requests, allowing filling forms with multiple fields in any order.
For instance, if after the initial question Which flight? the user specifies the
destination and the airline, the arc !origin (i.e. NOT origin, meaning that the
origin slot has not been filled) is traversed and the node origin? is executed
next. As a result the user is asked to provide the origin of the flight. Then, the
date? node is executed next since the condition !date proves to be true (i.e. a
specific date is not available yet). After the user has provided all the required
pieces of information (origin, destination, airline, and date) the subdialogue
exits through node 3.

Another example of functional model with a fixed topology controller is the
MIT dialogue management system (Seneff and Polifroni, 2000). In this case the
control is defined by a sequence of functions that are activated when the associ-
ated conditions fire. Each function can modify a session state (i.e. a frame-like,
or attribute-value memory structure) by adding additional information, includ-
ing a flag which instructs the controller on what to do next. Possible flags are:
CONTINUE, causing the execution of the next rule in the sequence, RETURN,
causing the controller to return to the initial rule, or STOP the execution. Again,
as in the VoiceXML case, developing a dialogue does not require a topological
description of the control graph, which is fixed and has the functional form
described by Figure 5, but the specification of the functions associated to the
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Figure 5. Functional control graph representing a rule based system.

nodes, and the conditions. The following is an example of a set of rules that
implement the same subdialogue as the one in Figure 4.

!origin → prompt origin()

!destination → prompt destination()

!airline → prompt airline()

!date → prompt date()

7. Inference-Based Dialogue Managers
We have shown in the previous section how several types of dialogue man-
ager can be reduced to a unique underlying model: the functional finite-state
dialogue controller. The difference between them is whether developers are
allowed to change the topology of the controller, and in the way they can au-
thor an application (e.g. by specifying a graph or a set of rules). However,
there are classes of applications for which a specification through a finite state
controller may appear impractical. As we discussed earlier, transactional appli-
cations with a well defined goal (e.g. giving information to the user, selling or
buying) can often be effectively implemented with a finite state controller. On
the contrary, some applications of the problem solving type (Allen et al., 2000)
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with a high complexity require a higher degree of planning, for which the fi-
nite state controller can be inappropriate. Although we start seeing commercial
technical support applications, which belong to the problem solving category,
being successfully adopted by certain industries, most of the more complex
problem solving applications have not yet found a channel to the market of spo-
ken dialogue systems. This is probably because the research prototypes have
not yet demonstrated the level of usability needed for commercial use. For in-
stance, the deployment of some sophisticated research systems would require
highly specialised development teams that may be prohibitively expensive in
a commercial setting. Moreover the performance of the systems for the most
complex problem solving tasks is not yet at the level required for commercial
exploitation.

In spite of its difficulty, the research community has been actively pushing
the technology towards the solution of the dialogue management problem for
complex systems, especially under the auspices of the DARPA Communica-
tor program. Successful prototypes have been demonstrated and tested based
on sophisticated dialogue managers that deviate from the finite-state controller
model, and include some degrees of inference. A distinguishing feature of the
inference based systems is that they refrain from attempting at a more or less
explicit description of the relationship between states and actions, as in the fi-
nite state controllers, but rather resort to engines that draw decisions on the
next action to perform based on a general strategy and on a formal description
of the domain, typically in terms of goals and subgoals. Thus, in order to de-
velop an application, rather than describing the VUI, one starts from a formal
description of the domain model in such a way to allow the inference engine
to drive the system to a cooperative solution.

In Stallard (2001) the dialogue control model is described by a tree repre-
senting the goal/sub-goal structure, with the leaves of the tree being the actions.
Actions, which include pre-conditions for their execution, are associated to in-
dividual goals. Internal nodes represent conditional controls on the execution
of the underlying nodes. A dialogue manager based on task ontology and a
hierarchy of nodes is described in Pellom et al. (2000). The dialogue man-
ager described in Wei and Rudnicky (2000) constructs a dynamic structure,
called agenda, which is a list of subgoals, where each subgoal corresponds
to the collection of some piece of information. A task is completed when all
the items in the agenda are completed. The agenda is created, dynamically, by
traversing a tree (i.e. the product tree) that describes, at any point in time, the
current task to be completed. The product tree has to be created dynamically
since the nature of the task may be dynamic as well (e.g. the number of legs
of a flight is determined during the interaction and not known beforehand).
In the form based dialogue manager described in Papineni et al. (1999) the
inference mechanism is driven by a numeric function computed on a set of
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partially completed forms (i.e. sets of task-relevant slots), based on how close
to the goal (i.e. the retrieval of information from the database) each individual
hypothesis is.24

Another line of research is based on statistical learning of the dialogue strat-
egy using mathematical models derived from statistical machine learning, such
as Markov Decision Process (Levin et al., 2000) or Bayesian network frame-
works (Meng et al., 2003). It is still too early to be able to understand whether
automated design of dialogue can allow building usable systems with a quality
comparable to that of those designed by VUI expert designers.

It is not yet clear whether any of the sophisticated inference dialogue man-
agers developed in research could be effectively used for mass production
of commercial systems. One of the problem is that their behaviour is quite
complex, and it may be difficult to predict all possible situations that could
arise during the interaction. Thus VUI completeness may be hard to achieve.
Research prototypes, so far, have been built by researchers with an intimate
knowledge of the quirks of the dialogue manager itself, and often by those who
built it. Thus, in order to succeed in the commercial arena, inference engines
have to produce systems with usability and robustness comparable or superior
to that of an equivalent directed dialogue for the same task, or implement ap-
plications that are so complex that they cannot be approached with directed
dialogue, still with usability as their main goal. VUI completeness is an essen-
tial requirement which should be seriously taken into proper consideration for
the more sophisticated dialogue manager models.

8. Current Industrial Trends
Reusable components (Huerta et al., 2005) and pre-packaged applications are
the main trends of the industry of spoken dialogue systems today. Componen-
tization and reuse effectively allow reducing deployment costs and risks and, at
the same time, simplifying the design and development of more sophisticated
applications. Thus the commercial world is approaching the creation of more
complex applications through more and more sophisticated building blocks
which allow reuse and interplay.

Additionally, the need for language flexibility and robustness has motivated
the use of Natural Language Understanding (NLU) technology. This require-
ment has allowed NLU technology to move from just call routing (Gorin et al.,
1997) to a more sophisticated use, like for instance understanding and cate-
gorising symptoms in technical support applications.25

24A commercial version of this dialogue manager was implemented by IBM and used in a financial applica-
tion (T. Rowe Price).

25http://www.speechcycle.com.
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9. Conclusions
The way applications are authored, what capabilities the systems have, and
the overall usability that is eventually perceived by users reflect the different
goals that research and industry have in the field of spoken dialogue systems.
Whereas usability and cost effectiveness are the primary goals of the commer-
cial community, research has traditionally aimed at naturalness of interactions
and freedom of expression. However, often the latter does not necessarily lead
to the former. The actual form assumed by dialogue managers in both commu-
nities is the consequence of those different goals. In fact, in order to achieve
high usability, commercial deployments aim at having completely definable
interfaces (control and VUI completeness), using efficient languages and ar-
chitectures (expressiveness and simple-things-should-be-easy) while keeping
the ability to achieve complex levels of interaction (complex-things-should-
be-possible). At the same time, the focus of research is towards abstracting,
validating and achieving complex levels of natural interaction. While at first
glance both sets of goals might seem in conflict, we believe that an evolution
towards more complex levels of interaction, while using an effective develop-
ment framework and implementing a “controllable” (VUI complete) interface
is possible.

We have shown that most commercial dialogue management abstractions
fall into the functional finite-state controller mechanism, as well as some of the
dialogue managers developed in research. The difference is in the constraints
applied to the topology of the controller and in the type of authoring (graphs
vs rules). We have also shown that there is a second category of dialogue man-
agers, inference based, which is devoted to handling more complex interac-
tions, such as problem solving applications. VUI completeness and economy
of development are required for them to become viable and reach the level of
usability needed to succeed in the commercial arena.

We believe that the authoring of applications should be aligned with the
model used at design time, and possibly to the runtime environment. In this
way efficiency can be achieved at all levels: design, development, and deploy-
ment. The framework should allow for the encapsulation of dialogue mech-
anisms into templates, components, and subroutines that abstract behaviours.
Beyond allowing for a reduction of development costs, this is also the first step
towards the implementation of more complex interaction mechanisms. Finally,
the framework should have strict “directed” and thus controllable default be-
haviour, but at the same time should allow for more complex interactions to be
triggered if and when these dialogue mechanisms would benefit the interaction
(e.g. expert and power users).

An important consideration that needs to be made when talking about the
use and usability of commercial dialogue systems is that their success has to
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take into account the willingness of the user to cooperate. Even the best de-
signed application based on the most advanced architecture fails when callers
refuse to use it. The problem is that the general public, the population of users
of commercial dialogue systems, is at best annoyed when they are faced with a
computer rather than a live agent. This phenomenon can be attested by the
cheat-sheets26 published on the Web that suggest words and sequences of
touch tone keys for callers of commercial customer care applications to get
a human operator right away. We can make an analogy with many other au-
tomated systems that are massively used today, and that provoked a similar
reaction when they were introduced first a few years ago, such as ATMs (or
cash machines) and answering machines. ATMs and answering machines are
ubiquitous today and nobody would ever think of them as replacements for
bank tellers and receptionists, but useful tools that improve our way of life.
Similarly dialogue systems are to be considered as tools that, if used prop-
erly, can provide faster and better service for the most common situations and
problems.

So, what is the main difference between research and commercial dialogue
systems? We can certainly say that while some research was originally inspired
by the dream of moving towards human-like interfaces characterised by fully
unconstrained interactions (the dream of a HAL 9000-like machine from the
celebrated 1968 2001, A Space Odyssey movie), commercial dialogue systems
have to have more practical goals such as robustness, usability, testability, and
ease of design and maintenance. Because of that, the commercial community
took the approach of very controlled interfaces with constrained input and lim-
ited initiative on the part of the user. In other words they assumed that compli-
ant users will learn how to use non-natural and highly limited interfaces, when
compared with a human–human analogy, in order to get their task done. While
the goal of research is certainly more ambitious, it has not had yet the oppor-
tunity to bring to life truly natural language mixed-initiative dialogue systems
as a viable alternative to the constrained commercial directed dialogues. This
is due, in part, to the lack of exposure that research systems have to a high vol-
ume usage that helps drive their improvement, the lack of research funds and
the interest of the funding agencies, and also in part to the choice of research
applications that often can be easily outperformed by analogous directed di-
alogue commercial applications. Should research concentrate on applications
that are so complex that they could not be approached with equal or higher
effectiveness by commercial systems, that would help establish a research goal
way beyond the current technology.

26http://gethuman.com.
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Finally we believe that a consolidation of the goal priorities (i.e. usability
and naturalness of interaction) between research and the commercial world
will foster further maturation of the technology. For this to happen, though, the
dialogue needs to start.
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DESIGNING SPEECH-CONTROLLED
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Abstract We present the prototype of an in-car speech-controllable MP3 player. In addi-
tion to basic commands such as “next”, “stop”, or “repeat”, one main feature
of the system is the selection of titles, artists, albums, or genres by directly ut-
tering them. We first describe the characteristics of automotive speech dialogue
systems in general, their technology and design. We then motivate the need to
design-implement-evaluate iterations as a proof-of-concept method and describe
the design process of the implemented MP3 player dialogue. Finally, we discuss
real-world challenges and future extensions for this application. The findings
and considerations of the chapter straightforwardly extend to other embedded
systems and general audio media.

Keywords: Automotive dialogue design; embedded speech recognition; ID3 tags; in-car
speech dialogue systems; MP3; speech-based music selection; voice control

1. Introduction
The Speech Dialog Systems division1 of Harman/Becker Automotive Systems
(HBAS) is a leading manufacturer of speech control systems for the automotive
market. Ever since joining Harman/Becker, the automotive division of Harman
International Industries, HBAS also gained a strong foothold in the audio mar-
ket. This provides the context for its work with voice-controlled audio systems.

The first product using HBAS’ technology was the Linguatronic system
available in Mercedes cars since 1996 (Heisterkamp, 2001). This first system
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1Former Temic SDS GmbH – Speech Dialog Systems.
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enabled the hands-free usage of the built-in car phone and was already com-
pletely speaker-independent. The vocabulary comprised about 30 words and
allowed continuous recognition of e.g. digit strings. Since then, these systems
have become more and more complex. Voice control of the audio system in
the car has become fairly common, and recent speech dialogue systems in in-
fotainment systems even allow for navigation destination input via voice.

Nevertheless, a direct selection of audio tracks by voice is not yet offered in
mobile or embedded products. Current audio systems with speech input only
allow general commands such as “next title” or “previous CD”. With com-
pressed formats such as MP3, digital music has become omnipresent. The
number of titles that can be stored on devices increases rapidly and this “clas-
sical” speech interface quickly becomes unwieldy. By contrast, direct selection
of audio media by speaking title, artist, or album name offers an attractive and
intuitive way to navigate through a mobile music collection.

In this chapter, we describe a prototypical speech dialogue system for se-
lecting audio media in a car. The chapter will focus on dialogue but will also
briefly discuss the challenges for such a system.

2. Related Work
Speech enabled media selection in embedded systems is not available as
a product yet, although several concept studies have been made (see, e.g.,
McGlaun et al., 2001; Pieraccini et al., 2003).

On the other hand, projects are currently under way to allow speech-based
media selection on server-based systems (e.g. refer to Baumann and Klüter,
2002; Schulz et al., 2004). Here, the main challenge for speech recognisers
comes not so much from the extreme limitation of computing power and
memory but rather from the additional distortion through channel coding and
bandwidth limitation.

3. Speech Dialogue Systems for Cars
In-car speech dialogue systems have been available since 1996. These systems
are embedded solutions, provided either as a separate hardware box (as shown
in Figure 1) or integrated into infotainment systems running under a variety of
real-time operating systems.

Cars are exposed to different climatic conditions, so their electronic com-
ponents have to be robust and long-living. Moreover, electronic spare parts
should be available for a car’s lifetime. To meet these high-quality require-
ments, costly flash memory needs to be deployed; current speech control sys-
tems have to work on platforms that offer a standard memory size of as little as
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Figure 1. Hardware speech dialogue module.

128 KB.2 To run speech dialogue systems on such limited environments, spe-
cial algorithms and tools are needed. HBAS’ dialogue description language
named GDML (Generic Dialogue Modelling Language) has been tailored to
be used on embedded devices. Furthermore, dialogue descriptions and speech
grammars are compiled to minimise resource consumption. For more details
refer to Hamerich and Hanrieder (2004).

The integration of such systems in cars is one of the central issues. Basically,
there are several bus systems in a car. The entertainment bus is used to control
the built-in devices, e.g. loudspeakers, tuner, CD player, and speech control.
It is independent of the motor control bus. For entertainment bus systems,
several variants exist, among them D2B (Domestic Digital Data Bus), CAN
(Controller Area Network), and MOST (Media Oriented Systems Transport).

3.1 Speech Recognition
Speech recognition performance in automobiles is in general subject to the
same conditions as for standard application domains (cf. Jelinek, 1976). How-
ever, in-car ASR adds particular challenges since high recognition accuracy
is required under aggravating conditions, namely noisy environment and very
low computational costs. Additionally, speaker-independent recognition3 and
a close to real-time system response are taken for granted.

2More memory will be provided in the future since technology will be cheaper and certain applications such
as media selection are simply memory-intensive. Nevertheless, the memory size for embedded devices is
not comparable with that of a standard PC.
3This means the system can be used by new users without a preceding training session.
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For optimal signal-to-noise ratio, the microphone should be positioned as
close to the driver’s mouth as possible. However, a close-talking microphone
in a car is not a realistic option due to its lack of comfort. Regarding the obvious
fact that each driver’s seat position varies, it is not trivial to find the optimal
microphone position. A further means to optimise recognition is the use of
microphone arrays. For example, in the current Mercedes-Benz E-class, four
microphones are installed in the rear-view mirror. About the peculiarities of
microphone arrays in the automotive environment, see Nordholm et al. (2001).
Even with the best microphone position, background noise, such as driving
noise or wind, and echo from the audio source, such as radio or navigation
prompts, need to be reduced, using echo cancellation and noise reduction al-
gorithms, respectively (Hänsler and Schmidt, 2004).

With regard to the small amount of memory, acoustic models need to be
extremely compact. Modelling approaches such as discriminative training get
the most from only a few model parameters (Valtchev, 1995; Willett, 2004).

The StarRec recognition engine4 features an advanced interface which al-
lows to set timeout values and confidence thresholds when calling the recog-
niser. Generally, the best recognition result is transferred to the parser, in this
way handing over the semantic representation to the dialogue manager. These
semantic representations are language-independent, allowing for simultaneous
dialogue development in several languages.

3.2 Automotive versus Server-Based Systems
Certain differences of automotive dialogues from server-based dialogues (such
as telephony applications) must be taken into account:

As already mentioned, one difference is the available memory and com-
puting resources. While there are practically no limitations for server-based
systems, there are severe memory restrictions for in-car dialogue systems. Lim-
itations on the target system often imply limitations on dialogue design – a
small memory can mean a loss of certain dialogue features and thus conve-
nience. For example, there might not be enough space for an extensive tutorial
or demo mode.

An automotive dialogue system has to monitor multiple modalities. Apart
from keeping track of the current dialogue state, it has to take into account both
the user’s haptic actions and the currently displayed information to compute
the current system state. For instance, the radio can be turned on by speech or
haptically.

The domain in telephony applications is often well known, e.g. in telephone
banking, the callers can check their current balance. Automatic reservation

4A product from Harman/Becker.
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systems will book a flight given the departure and arrival times, etc. As
fallback, in all of these systems the caller will be connected to a human opera-
tor. However, applications in a car are less obvious to be used for two reasons:
first, they do not offer a comparable fallback mode. Second, on-board devices
become less self-explanatory as their number and complexity grows. This
urges the need for our systems to provide a sophisticated help functionality.

Another challenge particular to automotive systems is the limited attention
that the driver can pay to the system. The dialogues must be designed to min-
imise distraction from the road. Thus, the dialogues are typically much less
complex than server-based dialogues. Sometimes they are reduced to very sim-
ple command & control dialogues.

An aspect that is realizable with automotive systems is the personalisation
of certain user’s data. A system can easily connect to a mobile phone or an
MP3 player to read out the address book or the MP3 songs. This is particularly
relevant for this chapter where songs from an MP3 collection are to be selected.
With respect to these data, the system is always up to date.

3.3 Infotainment Systems and Deployment
Infotainment systems integrate several information and communication ser-
vices, like telephone, tuner, CD player, CD changer, MP3 player, TV, and nav-
igation.5 Apart from the standard haptic use, these devices can be controlled
by speech, some systems additionally allow for controlling the air condition or
the seat heating by voice. In this way, the speech interface is an integral part of
a multimodal HMI, allowing for a convenient and safe control of the attached
devices in a car.

The most novel feature available in a car is speech-controlled navigation. A
destination is entered by spelling the first few letters of a city name. In addition,
the biggest, say 1,000, cities can be spoken as full words where the number
of cities depends on the available memory. Spelling mode is necessary since
for the speech recogniser there are too many possible recognition alternatives.
For instance, there are more than 68,000 different city names for Germany. For
embedded speech recognition systems, high accuracy word recognition of this
vocabulary size is still a challenge but will be available in products soon.

The speech dialogue systems described above have to be ordered ex works.
Meanwhile, many car manufacturers offer speech control systems as stan-
dard original equipment, e.g. the Linguatronic system for Mercedes-Benz cars.
Figure 2 shows the current infotainment system of the Mercedes E-Class.

All available devices are accessible via buttons, while the display provides
the current information. A dialogue is activated by pressing the Push-to-talk

5Refer to http://www.harmaninfotainment.com for further details.
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Figure 2. Infotainment system (COMAND APS) in the Mercedes Benz E-class.

(PTT) button, located on the steering wheel for comfortable reach (not visible
in the figure). As of today, keyword activation, which would render the PTT
button superfluous, is not available.

Currently, applications based on the described technology are available with
several car manufacturers, among them Audi, BMW, Lancia, Maybach, Merce-
des-Benz, Porsche, Rolls-Royce, and also in the aftermarket. So far, all of these
systems are still closed applications whose primary task is to control on-board
devices. Even for navigation destination input, the domain and the vocabulary
are known in advance. That is, there is no need to access data dynamically.

4. Automotive Dialogue Design
To assess the expected advantages in a car, let us recite Cameron (2000) for the
conditions under which people would use speech:

They are offered no alternative.

It corresponds to the privacy of their surroundings and the task at hand.

Their hands or eyes are busy on another task.

It is quicker than any alternative.
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These items correspond nicely to the situation in the car:
Safety: voice control contributes to safety because the driver can direct his

eyes to the traffic and leave his hands on the steering wheel instead of being
distracted by fumbling around with buttons.

Naturalness: speech provides a natural and quick access especially when
the user is lost with an ever more complex haptic interface.

Shortcuts: while in haptic interfaces, the user has to move through menu
levels. Speech provides an easy way to directly say what you want. For exam-
ple, by saying: “dial number” a telephone number can be easily entered without
understanding the menu structure of the complete infotainment system.

Since we depend on the quality of our products, proven usability of our
systems is of vital importance. Therefore, the primary task of in-car dialogue
design is to assure the fulfilment of the prerequisites for the above-mentioned
conditions, which means to bridge the gap between the user’s intuitive expec-
tations of how the system works and the technical conditions of the system. It
also means to cope with the innate, disadvantageous characteristics of speech:
First, speech recognition is not perfect, and second, speech is not persistent.

In our understanding, speech does not compete with haptics, it offers an al-
ternative communication channel to the already existing haptic interface. While
simple operations like volume control might still preferably be done by turn-
ing the respective button, a more complex operation like destination input in
a navigation system is more straightforwardly accomplished by speech. Since
infotainment systems for cars become more and more complex, speech inter-
faces offer a natural interface to control such complex functions. On the other
hand, speech is less appropriate to present information than a display.

For the design of an application, appropriate concepts are drawn from sev-
eral sources, research findings, experience, and involvement of users in ques-
tionnaires or experiments.

First, there are established design principles, having emerged from research
in general voice operated systems (refer, e.g. to Larsen, 2003; Suhm, 2003), as
well as classical user interface design (see, e.g. Shneiderman, 2003).

One important principle is consistency: similar dialogue parts are modelled
as analogously as possible to simplify the user’s understanding of the system.

Next is confirmation of user input, e.g. there is acoustic or visual feedback
on a user command. While it is superfluous when the command works as ex-
pected, the user feels abandoned when the system reaction deviates from the
user’s expectations. However, to decide on how much feedback should be im-
plemented needs careful consideration and depends on the respective dialogue
context.

The user can get help on commands that are possible in the current dialogue
context.
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Both system and user should be able to recover from errors by sophisticated
error handling strategies.

Shortcuts can be used to allow for more than one way to have a command
accomplished. They will be preferred by experienced users, while novices will
rather fall into a guided dialogue mode.

Last, the principle what you see is what you speak ensures that all commands
on a display or on device buttons are speakable.

Every new application has its particular needs. Established principles might
not apply or may need to be modified, new features have to be adopted. To find
out the requirements for a new application, we follow the design-implement-
evaluate paradigm as described in Bernsen et al. (1998).

The initial design draft is the result of a user questionnaire, a Wizard of Oz
(WOZ) experiment (Fraser and Gilbert, 1991), and expertise, where the current
technological conditions of the target system have to be kept at the back of the
designer’s mind. It serves as starting point for further design evaluations to
finally have a stable and user-approved version after a number of cycles.

The method finally chosen will depend on the quality of the dialogue issues
and the number of open questions. We have used the WOZ technique for con-
ducting usability tests (Petrik et al., 2005) under driving simulation conditions
(Mattes, 2003). This has proven to be an indispensable tool, especially for data
collection and validation of dialogue concepts before implementation.

5. Overall System Description
Since portable media players get more and more common, users wish to con-
trol these devices by speech as well. Such systems can be available nearly
everywhere, carried by the user or integrated in an automotive audio system.
In all cases, a huge collection of audio files can be stored on such devices. This
could, for example, be a mobile MP3 player, a USB memory stick, a memory
card, or the hard disk inside a car audio system or head unit. Several such me-
dia can be available in the system. Generally, it is required that certain meta
information such as title, artist, and album is available. In case of MP3 files,
these could be the ID3 tags that such files typically contain. If files do not come
with meta information, e.g. titles from a CD, such information can be looked
up in a database such as the Gracenote CDDB.

Our goal is to be able to select subsets from the entire music collection by
voice. For example, it should be possible to play songs from a certain artist or
all titles of a particular album or music of a certain genre. For this purpose,
the system keeps a database of all available media on all connected devices
with corresponding meta information. The information in the database is used
to dynamically configure the speech recogniser.
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Figure 3. Schematic architecture of the system.

To provide the user with a comfortable speech interface, the main features
of the system are:

The intuitive dialogue aiming at minimising the steps necessary to
accomplish a selection

Enabling the user to select a subset of the collection even if it is several
gigabytes large

A special “more like this” feature which allows the user to select songs
similar to the one currently playing

The dynamic enrolment6 of MP3 tags into the recogniser grammar

The possibility to attach external USB memory devices (including an
iPod)

A schematic overview of the system architecture is shown in Figure 3. The
system runs on a PC simulation environment as well as on a 200 MHz SH4
embedded platform.

6. MP3 Dialogue Design
MP3 players have become very popular and are available both in software
(e.g., Windows Media Player, iTunes) as well as in hardware. The iPod, for
example, features an innovative user interface which allows the user to quickly
navigate through the music collection. Similar interfaces for speech are not yet
available. It is not clear what an intuitive speech interface looks like, nor what
users expect from it.

6Enrolment means the addition of words as textual representations to the vocabulary at run-time.
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In order to find answers to these questions, the MP3 dialogue design was
investigated in two iterations. In the first round, a questionnaire was set up and
evaluated to collect user requirements and expectations. Established dialogue
design principles were applied to top off the dialogue design. Additionally, an
alternative search mode was introduced to enable the user to handle large lists.
Taking the concepts of the initial implementation as starting point, the second
iteration was conducted within the framework of a master’s thesis.

6.1 First Iteration
The following subsection describes the dialogue design process of the first
prototype.

6.1.1 Questionnaire. In order to find out which MP3 functionali-
ties are considered important for a speech-controlled MP3 application, the first
round started with a user questionnaire which was handed out to employees of
Harman/Becker in several countries. The majority of them were frequent MP3
users. The questionnaire covered a number of different features which can be
grouped into several categories:

1. Selection of track, album, artist, genre or composer by speaking its
name7

2. While a track is playing: read out information about the track, such as
track number, album, or artist name on demand8

3. Read out a list of tracks, albums, artists, genres, or composers to the user
on demand (as alternative to visual display)

As result, subjects regarded function category 1 as a required feature, while
category 2 was considered nice to have. Number 3 was rejected by the majority.
People said they would feel annoyed by long lists of names read out, and would
rather prefer the visual display to get the respective information. Consequently,
only the features of categories 1 and 2 were integrated into the first prototype,
while type 3 was rejected.

Moreover, especially the frequent users required handling of user-defined
playlists which will be integrated in a more advanced version of the application.

There was also a general consensus favouring simple, short dialogues. Users
want to enjoy the music rather than being entangled in lengthy dialogues. This

7Users were also asked whether they would like to select a track by humming disregarding technical fea-
sibility. The overwhelming majority rated this feature as nice to have but also as not necessary. Few users
pointed out that it was difficult enough to sing a melody at all.
8This item accounts for multimodality to provide car-drivers with a second information source while driving
(the respective information is also shown on display).
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is somewhat contrary to, e.g., navigation destination input where people expect
that separate dialogue steps are required to enter an address.

6.1.2 Dialogue. Based on the above mentioned findings, the MP3
player dialogue had the following prominent dialogue features:

It let the user select tracks by album, track, artist, genre, or composer
name.

It provided conventional navigation commands while a track was played:
“next”, “previous”, “skip”, “shuffle”, “stop” plus the respective album
commands. Of course, it was also possible in this dialogue state (not only
on top-level) to speak the selection and readout commands of category
1 and category 2 described above, such that the user could hear another
track or change the current album.

Of the category 2 features mentioned above, only the information of
the concepts “name of current track” and “name of current artist” were
provided.

The system could also play songs of a similar genre like the current
music files (“play me more like this”). There was no sophisticated mech-
anism to fulfil this request, instead, just a track with identical genre infor-
mation would be selected. In reality, genre selection poses a non-trivial
problem (see Section 7).

As is often the case, dialogue design had been a tightrope walk between sat-
isfying the needs of a novice and an expert, respectively: while a novice needs
guidance, an expert feels bored by repetitive actions of the dialogue system.
The system did justice to both requests by offering a guided dialogue mode for
the novice and shortcut commands for the expert where the decision for either
mode was taken by the user’s initiative. Moreover, having in mind that people
mainly want a system to quickly accomplish a command rather than one that is
overly verbose, the system was designed to support the users when necessary
but not to bother them with too many questions or numerous dialogue turns.
During the dialogue, we designed the system to offer little explicit support.

Help was provided, but in an unintrusive way:

Visual help: when the system waited for user input, a help screen dis-
playing currently speakable commands was shown (Figure 4). It was
active by default but could be turned off (and on again) by voice-
command.
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Figure 4. Main display of the MP3 application.

Dialogue help (timeout/nomatch): the system offered possible com-
mands after a timeout period or if the system did not understand the
user utterance.

Explicit dialogue help: the user could always ask for help, which was
given in a context sensitive form.

The default mode for the system was the play mode. So, after a command,
such as “(play) album Live in Paris”, the system would start playing the al-
bum immediately. The dialogue flow, as described so far, did not yet account
for the possibly huge size of an MP3 collection. However, large lists imply a
further use case besides just playing, namely the possibility to search for cer-
tain pieces of music. The system therefore offered a second command mode,
the browse mode. It allowed to search through collections by subcategories,
assuming a natural categorisation hierarchy: genre → artist → album → track.
For example, the command “browse the genre Jazz”9 showed all Jazz artists,
and saying “browse the artist Diana Krall” would display the artist’s albums.
The command “play all” would play the current selection. At the bottom of the
hierarchy, all tracks of an album were shown. The additional functionality has
meanwhile be evaluated with regard to the naturalness of the subcategories as
well as to the transparency of both command modes. Results regarding these
issues are presented in the following subsection where final results of the sec-
ond iteration are sketched.

9The keyword “browse” was required here.
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To start the MP3 player application, the user could say “MP3 player” or
just “music”.10 The system then prompted the user to speak, at the same time
offering a help screen that displayed all possible selection criteria, as shown in
Figure 4.

After having chosen a selection criterion (e.g. album or artist), the system
provided the appropriate item list. In order to optimise speech recognition,
the active vocabulary was adapted dynamically to the current selection. For
example, the track names of a current selection, in that case the track names of
Diana Krall’s album “Live in Paris” (this album being the current selection in
the example), were given preference to the track names of the whole, possibly
huge MP3 collection.

6.1.3 Sample runs. To hear MP3 encoded music files, users could
choose between the filters track, album, artist, genre, or composer which are re-
garded as the most common use cases. After the selection, the system prompted
the user to speak the respective item. The help screen, shown in Figure 4, was
active by default, in this way suggesting a menu-driven dialogue entry for a
novice:

Sample A

User[1]: Music Player
System[1]: MP3 Player
Display[1]: [see Figure 4]
User[2]: Select an album
System[2]: Which album?
Display[2]: [shows available albums for choice]
User[3]: Live in Paris
System[3]: Now playing the album Live in Paris
System[3]: [starts playing 1st track of album]
Display[3]: [see Figure 5]

More experienced users could use shortcuts, ignoring the visual help:

Sample B

... (see dialogue step [1] above)
User[2]: Play me the album “Live in Paris”
System[2]: Now playing the album Live in Paris
System[2]: [starts playing 1st track of album]
Display[2]: [see Figure 5]

10The MP3 application is part of a larger demo environment where several applications are available, but
only one music application.
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Figure 5. Display showing track information.

6.2 Second Iteration: Sketch of the Final Results
As mentioned earlier, the second iteration was realized as part of a Master’s
thesis (Schulz, 2006). It investigated how users would like to use speech in
complex application domains such as media selection. It comprised the steps
questionnaire, a WOZ experiment under driving simulation conditions, and a
final evaluation. The prototype has been implemented completely in German.

With the dialogue concepts presented in the previous subsection as starting
point, the relevant main findings are:

6.2.1 Play/browse hierarchy. In the first prototype, the browse
mode as alternative mode for the play mode had been implemented. This turned
out to be intransparent since both modes coexist in parallel, but only the play
mode is active by default.

As a solution, the selection categories have to be treated differently: In the
genre/artist case, people preferred the appropriate items of the subcategory to
be displayed for further selection. In the album/track case, subjects found it
natural when the system automatically started playing. As an additional result,
the album category was the subjects’ main selection criterion.

6.2.2 Explicit “play” command. In the WOZ test, the subjects
had to explicitly say “play” after having successfully selected the required mu-
sic items. The feature was clearly rejected. Instead, subjects’ natural expecta-
tion was that the music would start playing immediately without any further
commands, a circumstance especially true for the selection criteria track and
album.
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6.2.3 Creation of playlists. A few tasks required the subjects
to create a playlist and add more items to it during driving. Subjects clearly
disfavoured the option to create and edit playlists by voice.

6.2.4 Ambiguous input. Names are often ambiguous. For exam-
ple, album and artist names are often identical such as in utterances like “Play
Diana Krall”. Subjects expected a clarification prompt to help them select the
wanted item.

6.2.5 Display. The displayed information was perceived as highly
distractive in a driving situation. Instead, users would prefer more voice feed-
back.

Taking these results into account, a further prototype is currently being de-
veloped.

7. Some Notes on MP3 Tags
One of the main challenges is making good use of the information contained
in the MP3 tags. While there are tags for artist names, titles, album names, etc.
the information is much less structured than one might expect. This leads to a
number of challenges. A solution to these problems is the use of a database of
meta information such as the CDDB by Gracenote. Embedded versions of this
database are available and can be used to significantly improve the quality of
the MP3 tags.

7.1 Recognition and Synthesis
One of the biggest challenges for both recognition and synthesis is finding the
possible pronunciations for titles and artists. The current system focuses on the
US market but multilingual issues occur even here. There is a large Spanish-
speaking community in the USA and even French titles are not uncommon,
e.g. titles by Celine Dion. Slang words are also very common in music titles
and person names; even the human user is not always certain how to pronounce
them. All these effects can occur within one track name, for example: “Femme
like U”. Another problem is creative orthography such as “M!ss Understood”
or simply erroneous entries.

HBAS is working with Gracenote to provide a solution to these problems.
Gracenote will be providing phonetic transcriptions for the problem cases,
greatly enhancing the recognition accuracy as well as the speech output quality.
If there is no database available, however, rule-based automatic transcription
and exception dictionaries will be the fallback solution. See Figure 6 for a
schematic overview of this process.
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Figure 6. Schematic overview of the enrolment procedure of ID3 tags.

Partial matching is another issue. Many titles have longer official names
than are usually spoken, such as “The Shoop Shoop Song (It’s In His Kiss)”.
In such cases it is rare that the full title is spoken. Sometimes the title contains
additional information that is not really part of the spoken name such as “All
Cried Out (Unplugged)”, or “Ka-Ching! (Red Disc)”. The information can be
used to distinguish different versions of the same title (sometimes even on the
same album).

Here again, it is helpful to work with a partner who provides high quality
meta information to ensure that names and titles are transcribed in a consistent
way. This in turn makes it easier to parse the data and search through them.

7.2 Classification of Genre
The current system allows to play songs similar to the one currently playing.
This is called the “play me more like this” feature. Although interesting ap-
proaches for automatic classification from the young field of music retrieval
exist (Tzanetakis and Cook, 2002; Habich et al., 2005; Neumayer et al., 2005),
they do not yet provide reliable results. Therefore, we use, so far, simple string
matching which is based entirely on the genre tag contents of the songs.

Given a good genre classification, this can be very useful. Nevertheless,
classification by string comparison is problematic for a number of reasons:

Many users set up the genre descriptions of their MP3 files themselves,
using the fact that the respective ID3 tag “genre” allows arbitrary con-
tents.

An attempt to establish a standardisation of genres existed for ID3v1,
but was given up since it was found to be inconsistent and obsolete (ID3-
Homepage, 2005). Furthermore, 79 genres are neither easy to remember
nor fine-grained enough to support the “more like this” feature well.

One and the same album or track can belong to different genres.
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The reason for these problems lies in the fact that genre names are com-
pletely unrelated even for genres that are obviously similar, e.g. “Rock” and
“Hard Rock”: the taxonomic nature of genres cannot be exploited since genre
names are just strings.

Using a database of titles with a consistent and fine-grained genre classifi-
cation will help to solve this problem.

8. Conclusion and Future Work
In this chapter an MP3 player for embedding into automotive systems was de-
scribed, featuring the selection of titles and other selection criteria by speech.
We described the embedded environment for such a system and the technol-
ogy behind its implementation. To provide the appropriate background, gen-
eral concepts of automotive dialogue design were sketched. Moreover, the di-
alogue design of the application was covered. Furthermore, we illustrated the
challenges of speech-controllable ID3 tags.

To meet real-world requirements, several future extensions are planned.
With regard to the possible commands that the system can understand, it will be
extended by simple handling of playlists (“play my favourite playlist”), follow-
ing the results of user questionnaires. Additionally, multilingual recognition
and prompting are to be improved. Moreover, we want to go to the limits of
the speech recogniser by allowing quasi unrestricted utterances such as “Play
Live in Paris”. By contrast to example B above, no keyword indicates the filter
criterion “album”, which clearly makes the recognition task more complex.

The initial design of the system presented here was based on user ques-
tionnaires, general design guidelines, designer’s expertise and intuition. It was
therefore a first prototype that served as starting point for further design evalu-
ations. A second prototype was then developed and usability tested. Based on
these findings, a further improved implementation is under development.
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Abstract We describe the dialogue model for the virtual humans developed at the Institute
for Creative Technologies at the University of Southern California. The dialogue
model contains a rich set of information state and dialogue moves to allow a
wide range of behaviour in multimodal, multiparty interaction. We extend this
model to enable non-team negotiation, using ideas from social science literature
on negotiation and implemented strategies and dialogue moves for this area. We
present a virtual human doctor who uses this model to engage in multimodal
negotiation dialogue with people from other organisations. The doctor is part of
the SASO-ST system, used for training for non-team interactions.

Keywords: Dialogue; negotiation; virtual humans; embodied conversational agents

1. Introduction
Virtual Humans (Rickel and Johnson, 1999b) are autonomous agents who can
play the role of people in simulations or games. These agents generally have
some or all of the following properties:

Humanoid body (either a physical robot, or animated body in a virtual
environment)

Cognitive state, including beliefs, desires or goals, intentions, and per-
haps other attitudes

Embeddedness in the real or a virtual world
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Interactivity with the world (or a virtual world), other virtual humans,
and real people, including perception of events and communication, and
ability to manipulate the world and/or communicate with outers

Believable human-like behaviour, including affective reasoning and
behaviour

Virtual humans can play an important role in helping train skills of in-
teracting with others who have different beliefs, goals, and styles of behav-
iour. By building virtual humans that are not just humanoid in appearance
and external behaviour, but which also have internal models (including be-
liefs, goals, plans, and emotions) and ability to reason over these models and
formulate appropriate strategies and behaviours on the basis of the models and
perceptual input, virtual humans can behave appropriately for a range of so-
cial relationships. These kinds of agents have also been referred to by similar
terms, including animated agents (Rickel and Johnson, 1999a) or embodied
conversational agents (Cassell et al., 2000).

With respect to the dialogue capability, virtual humans have a number of
similarities with both task-oriented dialogue systems and chatterbots. Like
task-oriented dialogue systems, they generally have knowledge of tasks, and
models of the steps involved in the task and how to talk about them. However,
generally task-oriented dialogue systems strive to solve the problem as effi-
ciently as possible, minimizing the opportunity for misunderstanding, even if
this leads to unnatural and un-human-like dialogue. On the other hand, virtual
humans strive for human-like dialogue so as to train communication behav-
iours that might transfer to real human interaction. Moreover, for training, ef-
ficiency in task performance and brevity is not necessarily an advantage – the
longer the interaction the more opportunity for learning. Like chatterbots, vir-
tual humans have a focus on believable conversation, but their purpose is not to
convince someone that they are actually human, but merely serve as competent
role-players to allow people to have a useful interactive experience.

Our virtual humans have been developed incrementally over a number of
years, with developments being made in several aspects (Rickel and Johnson,
1999a; Hill, 2000; Rickel et al., 2002; Traum and Rickel, 2002; Traum et al.,
2003; Gratch and Marsella, 2004). These virtual humans are embedded in a
dynamic virtual world, in which events can happen, agents can perform actions,
and humans and virtual humans can speak to each other and communicate
using verbal and non-verbal means. The virtual humans are extensions of the
Steve agent (Rickel and Johnson, 1999a), and include sophisticated models
of emotion reasoning (Gratch and Marsella, 2004), dialogue reasoning (Traum
and Rickel, 2002) and a model of team negotiation (Traum et al., 2003). Agents
use a rich model of dialogue closely linked with a task model and emotional
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appraisals and coping strategies for both interpretation of utterances as well as
for decisions about when the agent should speak and what to say.

In previous work (Rickel et al., 2002; Traum et al., 2003), we described a
negotiation model that could allow virtual humans to engage as teammates.
To negotiate and collaborate with humans and artificial agents, virtual humans
must understand not only the task under discussion but also the underlying mo-
tivations, beliefs and even emotions of other agents. The virtual human models
build on the causal representations developed for decision-theoretic planning
and augment them with methods that explicitly model commitments to be-
liefs and intentions. Plan representations provide a concise representation of
the causal relationship between events and states, key for assessing the rele-
vance of events to an agent’s goals and for assessing causal attributions. Plan
representations also lie at the heart of many reasoning techniques (e.g., plan-
ning, explanation, natural language processing) and facilitate their integration.
The decision-theoretic concepts of utility and probability are key for modelling
non-determinism and for assessing the value of alternative negotiation choices.
Explicit representations of intentions and beliefs are critical for negotiation and
for assessing blame when negotiations fail (Mao and Gratch, 2004).

This model assumed that teammates shared common end goals, participated
in a social institution with roles that the participants played, and had strong
trust in the other teammates’ abilities and veracity. It did not address how vir-
tual humans might interact in the case where these factors were lacking, and
how to begin to form them through interaction.

In this chapter, we extend the dialogue model to allow for non-team nego-
tiation. The extended model allows for the case in which relationships may
need to be developed during the interaction, and in which the virtual human’s
behaviour may be very different depending on the nature and strength of the
relationships. We also present Dr Perez, an implemented virtual human who
uses this model to negotiate in a prototype training application.

In the next section, we describe the information state dialogue model for
virtual humans. This includes both aspects of information state and dialogue
moves. In Section 3, we describe how this model is used in understanding and
producing communicative behaviour. In Section 4, we discuss non-team nego-
tiation. After a brief survey of literature in the area, we describe our domain
testbed and then our first synthesis of this work in terms of strategies for vir-
tual humans, and then extensions to the dialogue model to make use of these
strategies. In Section 5, we show two example interactions with this agent,
showing how the dynamic trust model is developed during the interaction and
how this can affect the agent’s choice of utterance. We conclude with some
brief remarks about evaluation and future directions.



48 RECENT TRENDS IN DISCOURSE AND DIALOGUE

2. Dialogue Model
Our virtual human dialogue model uses the Information state approach
(Larsson and Traum, 2000; Traum and Larsson, 2003). In this approach, dia-
logue is modelled using the following aspects:

An Information State – including representations of the information used
to model dialogue context, distinguishing one (point in a) dialogue from
another

A set of dialogue moves, which represent contributions to dialogue and
packages of change to the information state

A set of rules (or other decision procedures) for modelling the dynamics
of dialogue, including the following types of rules:

– Recognition rules – that interpret raw communication input (e.g.,
speech, text, gestures) as dialogue moves

– Update rules – that govern the change in information state based
on observation of dialogue acts

– Selection rules – that choose a set of dialogue acts to perform,
given a configuration of the information state

– Realization rules – that produce communicative output behaviour
that will perform the set of dialogue moves

Rules have a condition part (that specifies constraints on the information
state that must be satisfied in order for the rule to fire) and an effect part
(that specifies how the information state changes when the rule applies)

An algorithm that specifies the order and priority of rule application

There are several toolkits that allow one to specify an information state,
dialogue moves, rules, and an algorithm, in order to create an information state
dialogue system. These include TrindiKit (Larsson et al., 1999), Dipper (Bos
et al., 2003) and Midiki (Midiki Users Manual, 2005). Rather than using one
of these toolkits, our dialogue manager is implemented in SOAR (Laird et al.,
1987). Like these information state toolkits, SOAR has an information state,
consisting of objects with links to values and other objects. In this sense it is
very much like the information state of Godis (Cooper and Larsson, 1999) and
EDIS (Matheson et al., 2000) which are based primarily on AVM-like record
structures. SOAR also is a rule-based language. SOAR’s main algorithm is to
apply all rules simultaneously, and order of application is achieved by referring
to dynamic aspects of the information state in the condition parts of the rule.
For example, if rule 1 has a condition that requires the presence of a particular
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value in the information state and that value is only set by rule 2, then rule 2 will
fire before rule 1. While the main body of dialogue processing is achieved by
application of rules in SOAR, there are also other computational mechanisms
that can be used, e.g., general programs in TCL, and an input/output interface
that can send and receive information from external system modules written in
any language.

There are two main differences in our virtual human dialogue model that
distinguish it from most other information state based dialogue managers.
First, the information state and sets of dialogue moves are divided into a
number of layers, each covering a different aspect of communication (Traum
and Rickel, 2002). We believe the scope and breadth of these layers exceeds
any other implemented dialogue system in terms of the range of phenom-
ena modelled, allowing our virtual humans to engage in multiparty dialogue,
multiple, temporally overlapping conversations, and both team and non-team
negotiation. Second, many other parts of the virtual human model, including
task reasoning, planning, emotion reasoning, and goal-directed behaviour are
also represented in the same information state approach within SOAR as the
dialogue model, allowing very rich interaction between these components.
Dialogue rules may make use of these aspects of the information state in
all phases of processing, from recognition of dialogue moves to generating
behaviour.

In the rest of this section, we give an overview of the aspects of information
state and dialogue moves that are most important for dialogue processing. In
the next section we overview the arrangement of dialogue processing rules.

2.1 Information State Aspects
The top level of the dialogue information state includes a number of aspects
including Ontology, Lexicon, Participants, Social State, Speech Event His-
tory, Conversation(s), and Social Planning. The ontology contains mostly
static information about subcategorizations, including selection restrictions of
roles for events, and group membership. The lexicon maps words from Eng-
lish and the external recognisers to the internal task and dialogue ontology.
The participants list keeps track of all participants (both real and virtual) in the
simulation, including information about distance and accessibility for contact,
and hypotheses about current gaze and attention of the participants. Social state
information includes both the roles and relationships that participants hold to
tasks and each other, as well as the obligations and social commitments to
propositions that participants hold toward each other.

Multiple conversations can be active at a time, and each one has its own
internal structure. Conversation structure includes

A list of participants in the conversation (who are assumed to under-
stand the grounded contributions), divided into active participants who
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perform speaker and/or addressee roles in utterances of the conversation,
and overhearers (who do not)

Modality of the conversation (face to face, radio, etc.)

The turn-holder (a participant, or none)

The initiative-holder (a participant or none)

The purpose of the conversation (e.g. to negotiate a task), if any

A history of utterances that are part of the conversation

A history of concept mention

A structure of questions under discussion

A grounding structure, consisting of a bounded stack of common ground
units (Traum, 1994)

The social planning structure contains information useful for planning and
recognising future dialogue actions. The main aspects are:

A set of potential obligations, including actual discourse obligations
(Traum and Allen, 1994), as well as those that would be established
if an open grounding unit were to be grounded and those that would be
established based on conditional rules if the antecedent is planned

A set of expectations of what is likely to be said next, following from
what has been said (e.g., reactions to a suggestion, or discussion of a
next step in a plan after the current topic of discussion

An agenda of partially ordered dialogue goals

The goals on the agenda can come from domain goals in the task model
(including various types of communication, such as getting another agent to
do something, agreeing on a solution, getting permission, or seeking knowl-
edge), the emotion model, or other aspects of the agent’s reasoning process.
The agenda is used both for generating new initiatives (see Section 3.1), and
as a further source of expectations for use in interpreting utterances that do not
refer to the context of what has been recently said or observed, in a manner
similar to the account of plan and question accommodation in Larsson (2002).

In addition to these aspects of the dialogue information state, dialogue pro-
cessing also makes use of a number of information state elements from other
modules, including a causal history of past events, the current world state, and
plans. Also used are assessments of utility of possible actions and emotional
appraisals of potential actions.
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2.2 Dialogue Moves
The dialogue model includes multiple layers of interaction, each with associ-
ated parts of the information state and dialogue moves. These layers are de-
scribed in more detail in Traum and Rickel (2002). Figure 1 shows the set of
acts in each layer used in the current implementation.

The forward and backwards acts together are classed as core speech acts,
while the other classes are grouped together as other dialogue acts. Core
speech acts are most directly connected to the social state part of the informa-
tion state, adding and relieving obligations, social commitments, and affecting
social relations. These acts also have functions related to influencing the topics
under discussion in the conversations that they are a part of.

Core speech acts have a content which is either a state, an action descrip-
tion or a question about one of these. Each of the states and actions in the
task model is annotated with semantic information that can be used to de-
scribe and recognise description of those states in natural language (and our
speech-act based agent communication language). Speech recognition and nat-
ural language interpretation produces similar contents from spoken utterances.
Dialogue processing then compares the NL representation to the relevant task
model representations, and, if a sufficiently close match can be found with a
task model state or action, that is seen as the referent.

Unlike many accounts of the effects of these speech acts (e.g. Cohen and
Perrault, 1979; Allen, 1983; Cohen and Levesque, 1990; Fipa, 1997), there are
no direct effects on the beliefs, desires or intentions of the conversational par-
ticipants. This allows for the possibility that participants are insincere in their
utterances. Following Traum and Allen (1994), the direct effects involve social
commitments, and one may then infer from these commitments the beliefs or
intentions commonly associated with these utterance types, given additional
assumptions.

forward acts assert, info-req, order, request, thank, greeting, closing,
express, check, suggest, promise, offer, apology, encour-
age, accuse, intro-topic, avoid

backward acts accept, reject, address, answer, divert, counterpropose,
hold, clarify-parameter, redirect, confirm

conversation start-conversation, end-conversation, confirm-start, 
deny-start, pre-close

grounding initiate, continue, repair, acknowledge, request-repair,
cancel

turn-taking keep-turn, hold-turn, release-turn, assign-turn
initiative take-initiative

Figure 1. Types of dialogue moves.
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Assertions will have the effect of establishing a commitment by the spea-
ker that the state holds, or that action happened, is happening, will happen,
or should happen, depending on the tense and aspect of the utterance. Info-
requests have a question as their contents. Questions are (possibly partial)
propositions together with a designated q-slot indicating the part of the propo-
sition asked about. Info-requests have as their effect an obligation to address
the question. Requests have an action as content, and the effect is an obliga-
tion to address the request, e.g., to consider and give feedback on the request.
Orders, which can only be performed by a superior to a subordinate in the
social structure, have as their effect an obligation to perform the action that is
its content. Suggestions do not impose obligations, but do focus the topic on
the action.

3. Dialogue Processing
Language processing occurs in two distinct and interleavable “cycles”, one for
understanding language and updating the information state, and a second for
producing language. This separation of input and output processing cycles al-
lows the agent to have an arbitrary interleaving of contributions by itself and
others rather than enforcing a rigid turn-alternation. Each communicative con-
tribution is simultaneously interpreted at each layer, and may correspond to
a number of acts at different layers. The interpretation cycle includes stages
for speech recognition, semantic parsing, contextual processing (including ref-
erence resolution, intention recognition and dialogue act interpretation), and
finally updating the information state.

Generation usually starts from an intention to perform one or a small set
of acts, however any realized utterance will also correspond to a number of
acts, some of which (e.g., turn-taking) may be as much a result of the timing
of the performance with respect to other events as to the planned behaviour.
Generation proceeds from one of two sources: reactions to utterances of others
and events in the virtual world, and initiatives which proceed from the agents
own goals and agenda.

There are different sorts of reactions which are prompted by different
aspects of the dialogue information state, including returning greetings, groun-
ding understood material and repairing material that was not understood,
addressing obligations, and reacting to proposals. Some are predicated on
the agent having the turn (or at least another agent not having the turn), while
others (e.g., repairing errors, reacting to danger) are not, and can produce inter-
ruptions. There is also a partial order priority scheme so that, e.g., addressing
an obligation takes priority over merely acknowledging that a question has
been asked.
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3.1 Initiative Model
The initiative model consists of three main components, which handle three
central problems:

What to talk about

When to talk about it

How to talk about

The first component is modelled by the agenda, mentioned in Section 2.1.
Whenever the agent forms communicative goals, these are added to the agenda.
Goals on the agenda may be ordered with respect to each other, and special
track is kept of all possible next items and the current agenda item that the
agent is focused on. For each item, a record is also kept of how many times
and in which ways this item has been talked about.

There are multiple ways to trigger the agent to take the initiative. Policies
can be set to monitor certain conditions of the dialogue, other mental state, or
the environment. These initiative policies can also be individually turned on
or off according to a threshold for initiative level, and a current initiative level
that is part of the agent’s personality profile. Currently the following policies
are used:

When a threshold for too much silence has been exceeded: this is used to
insure that a conversation will not stagnate, even if a user does not know
what to say.

When a threshold for too many cumulative errors in understanding has
passed: this is used to take control when the user is having problems
understanding or making him or herself understood.

When a threshold for too many consecutive irrelevant utterances has
been exceeded: this is used to ensure that the conversation does not drift
off the topic of the conversation. In some cases a user may be trying to
speak relevantly, but goes beyond the comprehension capability of the
agent, either by using unknown vocabulary, constructions, or implicit
connections that the agent’s inferential power is unable to connect. In
all of these cases having the agent take the initiative often makes the
conversation more fluent.

At the directive of a human controller or director agent: this is used to
trigger initiative “manually” or for some other reason outside of the rea-
soning of the agent itself.

When an initiative trigger is reached, the agent will choose an item at the
top of the agenda (usually the current item, if there is one), and proceed to take
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the initiative. There is still the issue of how to address the agenda item. This
depends in part on what kind of item it is and other factors of the domain and
context for the conversation. In general, though, there is a cascade of several
different modes and a count of how many times an agent will use that mode.
For instance, in the MRE domain (Traum et al., 2004), when the Sergeant wants
to propose an item that he would like the Lieutenant (his superior, but also his
trainee) to do, he sequentially uses the following modes to bring up the desired
action:

1 Hint: mention an end goal of the action (according to the task model) that
is currently unfulfilled, or a pre-condition of the action that has already
been met, thus enabling the action.

2 Suggest: directly suggest the action itself as a possibility.

3 Request: specifically request permission to perform the action.

4 Perform: perform the action without authorization (unless specifically
prohibited).

Together, these factors of the initiative model allow the agents to engage in
mixed-initiative dialogue, with the level of initiative that the agent takes being
a factor both of customizable parameters as well as dynamic conditions of the
dialogue.

4. Non-Team Negotiation
The model presented in the previous sections was designed mainly for team in-
teraction, where it is assumed that the teammates have the same general goals,
although they may disagree and negotiate about the best ways to achieve those
goals. For more general situations, we must generalize the model of negotiation
to include neutral and adversarial conditions.

4.1 Orientations Toward Negotiation
One of the central ways to characterize negotiation under adversarial condi-
tions is with respect to the tension between competition and cooperation. Ne-
gotiators may have different goals, perceive themselves in conflict over those
goals but may also perceive the need to cooperate to some degree to achieve
their goals. In this view, one can characterize the state of a negotiation process
from the perspective of the competitive/cooperative orientation of the parties
to the negotiation and the strategies they employ in light of those orientations.
Specifically, one oft-made distinction is between integrative and distributive
(Walton and Mckersie, 1965) situations. If a negotiation is a win–lose game
where there is a fixed value to be distributed, then it is called distributive.
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There will be a winner and a loser. In contrast, an integrative situation is one
where both sides can potentially win, a win–win situation where negotiation
could add value and be of benefit to both sides. These basic distinctions pre-
sume some commitment to engage in negotiation. However, an individual may
simply believe that there is no possible benefit or even need to negotiate. This
individual may have an orientation to simply avoid the negotiation or deny the
need for it, what is termed avoidance (e.g. Sillars et al., 1982). We thus start
with three basic orientations toward a negotiation: avoidance, distributive, and
integrative. Whenever an agent seriously considers a negotiation situation it
will choose one of these three orientations.

Negotiators may perceive a situation as one to be avoided, or as a distrib-
utive or integrative situation regardless of whether this reflects the true situa-
tion. Changing the perceptions of other agents is often one of the main tasks
in a successful negotiation. Based on current perceptions, people tend to use a
range of dialogue tactics consistent with their orientations (Putnam and Jones,
1982; Sillars et al., 1982). Avoidance tactics include shifting the focus of con-
versation and delays. Distributive tactics can include various defensive moves
such as stating prior commitments that bind the negotiator or arguments that
support the negotiator’s position. Distributive tactics can also be more offen-
sive, such as threats, criticisms and insults. Integrative tactics are more co-
operative with negotiators actually attempting to see issues from the other’s
perspective. Tactics can be arguments that support the other’s position, accep-
tances of offers, offers of support, etc. Note at a finer grain of analysis, the
tactics employed have both instrumental and affective components. For exam-
ple, distributive tactics, besides trying to gain competitive advantage, tend to be
associated with angry or intimidating behaviour whereas the integrative tactics
try to promote a positive affective climate (Putnam and Jones, 1982).

Negotiators will often shift orientations during the course of a negotiation.
Several factors have been identified as being critical to moving towards an
integrative orientation, including acts of reciprocity, establishing trust and re-
inforcing shared goals (e.g. Wilson and Putnam, 1990).

4.2 Domain Testbed: Support Operations
Whether it is Kosovo, East Timor, or Iraq, one lesson that has emerged from
attempts at “peacemaking” is that negotiation skills are needed across all levels
of civilian and government organisations involved. To have a lasting positive
effect, interactions between military and locals must be carried out in a way
that generates goodwill and trust. We have selected this general class of oper-
ations as a testbed for our work on negotiation.

More specifically, we are developing a training scenario in which a local
military commander (who has a rank of captain) must negotiate with a medical
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Figure 2. VR clinic and virtual human doctor.

relief organisation. A virtual human plays the role of a doctor running a clinic.
A human trainee plays the role of the captain, and is supposed to negotiate
with the doctor to get him to move the clinic, which could be damaged by a
planned military operation. Ideally, the captain will convince the doctor with-
out resorting to force or threats and without revealing information about the
planned operation. Figure 2 shows the trainee’s view of the doctor in his office
inside the clinic. The success of the negotiation will depend on the trainee’s
ability to follow good negotiating techniques, when confronted with different
types of behaviour from the virtual doctor.

4.3 Negotiation Strategies for Virtual Humans
One of our first steps toward implementing a virtual doctor character was to
analyze how people act in that role. To this end, we have conducted a series
of role-play sessions, in which one person plays the role of the captain while
another plays the role of doctor. Each is given a short set of instructions with
different background information, goals, and resources for the negotiation, but
given freedom as to how to conduct the negotiation and react to their partner.
In these dialogues we can see examples of each of the orientations described
in the previous section. For example, in the first one, the doctor displays an
avoidance orientation, and is able to divert the topic of the conversation from
the move to the military’s role in upcoming operations for over 10 turns (only
the first few are shown here). In the second one, we see a doctor illustrating the
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distributive orientation, contesting the basic facts and goals rather than working
together on common issues. In the third one, we see an example of integrative
orientation, the doctor having accepted the danger of the current location and
willing to meet the captain’s goals if his own are also addressed.

(1) C: It’s a temporary move, once the battle is over, you will be
moved back.

D: Why don’t you cancel your battle? Why don’t you not kill
these people.

C: We’re not the ones deciding the battle.
D: You’re the ones here. You’re telling me this.

(2) C: We need to move as soon as possible. There are insurgents in
the area. This is very unsafe, you’re putting yourself and
your patients in danger.

D: Why? I don’t want to move. I have all these patients here.
They won’t move, if I move who would who could save them?

C: Sir, everyone is in danger! If we stay here there’s ...
D: I’m not in danger.

(3) C: Insurgents will not hesitate to harm civilians if that’s their
path that they need to take. They won’t hesitate to harm
doctors, a doctor or even injured patients if they feel that’s the
the means to their end.

D: Well.
C: This is why you need to come to us.
D: I think we can make a deal. You can give me medical supply,

and then we can go with you. I need supplies as soon as
possible. As you can see, we are running out of supplies.

We have developed strategies for each of these orientations. Our virtual hu-
mans can use the strategies to adjust their behaviour toward the orientations
described above. A strategy consists of several aspects including: entry con-
ditions, which indicate when adoption is appropriate; exit conditions, which
indicate when the strategy should be dropped (often in favour of more ap-
propriate strategies); associated moves, which can be performed as tactics to
implement the strategy; and influences of the strategy on behaviour and rea-
soning. These aspects result from the underlying emotion and dialogue models
of the virtual humans.

The EMA (EMotion and Adaptation) model of emotion (Gratch and
Marsella, 2004) describes how coping strategies arise as cognitive and physical
responses to important events, based on the appraisal (Scherer et al., 2001) of
perceptions related to goals and beliefs. Appraisal characterizes events in terms
of variables that guide the selection of an appropriate response (e.g., is this de-
sirable? can it be avoided?), but the event need not be physical. Negotiation
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strategies can thus be seen as types of coping strategies in which the event in
question is the negotiation itself, and moves are the types of dialogue actions
an agent will perform as part of a negotiation.

The avoidance orientation arises from an appraisal that the negotiation is
undesirable but avoidable. The main motivation is to try to escape from the ne-
gotiation. When this appraisal is active, the agent chooses an avoidance strat-
egy. Exit conditions will be the negation of either of the entry conditions —
when the agent believes either that the negotiation has some utility or that it
is not avoidable, the agent will abandon the avoidance strategy. The avoidance
strategy involves attempts to change the topic of a conversation or get out of
it entirely. When applying the avoidance strategy an agent will refrain from
commenting on the object of negotiation, even to refute claims.

When in distributive mode, the agent will attempt to “win” rather than “lose”
the negotiation. This can be associated with several strategies, depending on
the type of decisions to be made and the range of possible alternatives. An
attack strategy is appropriate when the appraisal is that a negotiation is not
avoidable and the proposal is undesirable. Other strategies are also appropri-
ate for a distributive orientation, including defence against a threat rather than
attack, or making unreasonable demands in the hope the other party will drop
the negotiation. We defer this for future work. One should drop an attack strat-
egy when either the negotiation becomes desirable, or it becomes more prof-
itable to avoid (or defend) than attack. The attack strategy involves pointing
out the reasons why a proposal is flawed, or ad hominem attacks on the nego-
tiator.

An integrative orientation leads to attempts to satisfy the goals of each of
the participants. The negotiate strategy is appropriate when an agent thinks
there is a possible value to the negotiation — e.g., there is a higher expected
utility from the expected outcomes than would be the case without the negoti-
ation. This strategy is dropped either when the perceived utility of continuing
to negotiate drops below a threshold, or when the negotiation has been com-
pleted. Moves in the negotiation strategy involve problem solving and bargain-
ing, much in the manner of the team negotiation in Traum et al. (2003).

The success of a negotiation is also mediated by factors that influence the
perceived trust between parties, including a belief in shared goals, credibility
and interdependence. The doctor is unlikely to be swayed by an offer of aid if
he does not believe the captain can and will fulfil his commitments. Trust issues
are pervasive throughout the negotiation, since there is usually not much point
in negotiating with someone you expect to lie, be ill-disposed toward you, or
not keep their side of a bargain.
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4.4 Extensions to the Dialogue Model
Several extensions to the dialogue model were needed to handle possibly ad-
versarial negotiation and the types of phenomena occurring in this domain.
The most basic is sensitivity to the dialogue strategy, which involves overrid-
ing some basic reaction rules in some cases. For example, when applying the
avoidance strategy one must not directly address a proposal that is on the topic
of avoidance. Sometimes these utterances are not even grounded as a way of
avoiding talking about an unpleasant topic. In this section we will examine
two other extensions: updates to the initiative model and a new type of back-
ward dialogue act for intentionally flouting the Gricean maxim of cooperativity
(Grice, 1975).

4.4.1 Modelling trust. According to the dialogue model in
Matheson et al. (2000), the direct effect of an assertion is the introduction of a
commitment, whether or not either party believes in the assertion. While this
is sufficient for reasoning about the claims and responsibility for information,
we need to go further and potentially change beliefs and intentions based on
communicated information. Trust is used to decide whether to adopt a new
belief based on the commitments of another.

Similar to Marsella et al. (2004) and Cassell and Bickmore (2003), trust is
modelled as function of underlying variables that are easily derived from our
task and dialogue representations. Solidarity is a measure of the extent to which
parties have shared goals. It is derived from a running tally of how many times
the trainee makes assertions or demands that are congruent with the agent’s
goals. Credibility is a measure of the extent to which a party makes believable
claims. It is derived from a running tally of how many times the trainee makes
assertions that are consistent with the agent’s beliefs. Finally, familiarity is a
measure of the extent to which a party obeys norms of politeness. Currently,
an overall measure of trust is derived as a linear combination of these three
factors.

4.4.2 Extended initiative model. For properly modelling nego-
tiation strategies the initiative model must be changed from that of team collab-
oration. The basic mechanism remains in place, however the current strategy is
also made part of the agenda. Some agenda items are tied to particular strate-
gies. For the avoidance strategy, initiative will concern the agent’s own goals
that are unrelated to the topic of negotiation. The irrelevance threshold is also
disabled, as this strategy “succeeds” when the agent is able to shift the topic
somewhere else.

For the attack strategy, each problem that the agent foresees with the action
that is the topic of negotiation is added to the agenda. These problems include
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Pre-conditions of the action that are not met

Other, better plans (according to the utility calculations in the task
model)

Undesirable side effects of the action

Another general agenda item for this domain in particular, is a desire for
Doctor Perez to get back to his patients and end the conversation. This gen-
erally takes lower priority than more specific items within a strategy, but
can come out if no other agenda items are available. Following the model in
Section 3.1, there are several levels of utterances to support this goal, ranging
from pre-closing reminders that he is busy, to finally ending the conversation.

4.4.3 Avoidance moves. Another important extension to the dia-
logue model is the addition of an avoidance dialogue act. According to Traum
and Allen (1994), when presented with a request or question, one has an oblig-
ation to address this utterance, though not necessarily accept it and perform
the desired act. There are many cases in which one might not want to perform
the act. Rejection is an option which addresses the speech act, but may have
negative consequences of its own. First, it commits the speaker to a negative
position, which may not be desired. Second, it serves as a face threat (Brown
and Levinson, 1978). A third option is to try to avoid an explicit commitment.
One way to do this is by deferring a resolution to the future (e.g., “let me get
back to you about that”), which does also commit one, and also may not be
satisfactory to the interlocutor. Another type of action is to attempt to change
the topic altogether. Depending on how explicit the request is, this may or may
not go against an obligation to address. Thus, mentioning a topic indirectly is
more polite than a direct request, because it does not force someone to not meet
an obligation when avoiding.

We can see examples of avoidance from both participants in the dialogue in
Figure 4. In turns 8, 10, and 12 the doctor is avoiding the move-clinic topic,
following an explicit strategy to talk about something else. In turn 11, the cap-
tain is avoiding giving a direct answer to the doctor’s question about whether
the captain will attack. The captain is in a tough situation here: if he says “yes”,
he will hurt both solidarity (by showing conflicting goals) as well as possibly
endanger his mission by revealing future plans. On the other hand, if he says
“no”, he will be lying which will hurt credibility if he is found out. By avoiding
the question, he does not fall into either of these traps, though there is a danger
of not fulfilling the discourse obligations. The explanation (“I can not disclose
more information”) does partially address this issue, and leaves the door open
for future trust-building, such as in turn 13.
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5. Example Interactions
Consider the dialogue in Figure 3. This is just one of many possible interac-
tions, depending on the choices of the human captain, as well as several aspects
(some probabilistic) influencing the choice of moves and strategy transitions
of the virtual human doctor. Shown along with the dialogue are strategy tran-
sitions and the major influences on the trust components: familiarity, solidarity
and credibility.

Here the captain acts as he might with a team member — after starting
the conversation, launching directly into his purpose, and answering a ques-
tion straightforwardly. While this would have worked with a subordinate team-
member, it has disastrous effects on the neutral doctor, bringing his trust level
almost down to zero and failing to accomplish both objectives.

In this dialogue, nothing was done by the captain to try to establish a better
relationship with the doctor, or address the issue of differing objectives and

1 C Hello Doctor Perez.
2 D Hello.
3.1 C I have orders to move this clinic to an-
  other location.
4 D You want to move the clinic?
5 C Yes
-SOLIDARITY’
Strategy shift: Avoid negotiating about move
6.1 D Look at these people!
6.2 D We need to help them.
7 C It is not safe here, we can’t protect you.
-CREDIBILITY’
8.1 D Protect me? Protect me from what?
8.2 D Are you going to attack?
9 C Yes
-SOLIDARITY’
10.1 D We need proper supplies here
Strategy shift: Disrupt negotiation about move
10.2 D To move the clinic is not possible, we
  have many patients in critical condition.
11 C It is very important to move now!
-SOLIDARITY’
12.1 D You are the threat, I need protection from
  you!
Strategy shift: Unsuccessfully conclude the nego-
tiation
12.2 D I would have to refuse this decision.
12.3 D I must go now.

Figure 3. Unsuccessful negotiation dialogue between C, a captain (human trainee) and D, a
doctor (virtual human) showing positive and negative effects on trust.
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beliefs. The first exchange after the greetings (utterances 2–5) lowers solidar-
ity by showing different objectives, setting up more of an antagonistic than
cooperative interaction. The doctor tries to avoid the topic, focusing instead on
his patients, rather than the captain’s stated goal. The captain tries to argue for
his proposed course of action, but only makes things worse with utterance 7.
First, he says something the doctor doesn’t believe (that the clinic is in danger),
lowering his credibility. The doctor is able to reason though that perhaps the
captain knows of a reason why it will be unsafe, and challenges by asking if
he is going to cause the danger. In 9, the captain answers sincerely, which is a
mistake on two fronts. First, he reveals more about his mission than he should
to an outsider, possibly endangering its success if word gets out to his enemies.
Second, he shows even further divergence from the doctor’s goals — attack-
ing rather than helping the patients. After one more brief attempt to change
the topic and get help for his own goals, the doctor gives up on the captain
in (10.2), and tries to get out of the negotiation. The captain has failed in his
objective and prospects are not good for future relations.

For really learning about negotiation it is very helpful to know not just what
the other party did, but why. In real negotiations it is usually not possible to
get “inside the head” of the negotiating partner, and even subsequent questions
can sometimes damage the nature of the interaction itself. In this respect, vir-
tual humans present a real opportunity to improve on training. As shown in
Figure 3, we have implemented a trace facility that provides an annotated tran-
script of the dialogue, showing not just what the virtual human thought was
said, but how it influenced his trust, beliefs, and strategy choice. This tool can
be used in an “after action review” (AAR) to look in detail at the specific effects
the trainee’s negotiation tactics had. Here we can see the reasons for decreases
in credibility and solidarity as effects of the commitments the captain makes in
relation to desires and beliefs of the doctor.

Figure 4 shows a more successful interaction, where the captain tries to
build bonds as well as accomplish his task. While the captain’s behaviour in
this dialogue is not perfect either (the captain might have been better served
spending more time up front establishing familiarity and solidarity and perhaps
addressing the doctor’s concerns first), it is a big improvement over the dia-
logue in Figure 3. Here the greetings in turn 3 add some familiarity, and the
evasion in turn 11 does not do as much damage as the blanket statement of
acting against the doctor’s interest in the previous dialogue. Things are still not
going very well, though, until the captain establishes some common goals with
turn 13. With slightly higher trust, the doctor does not break off negotiation at
this point, but rather raises a series of objections. By addressing each of the
doctor’s concerns: safety of patients, lack of supplies, lack of transport, and
neutrality, the captain is able to bring him around to the point where the move
is not an absolute negative, but is worthy of consideration, as part of a team
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1 C Hello Doctor Perez.
2 D Hello.
3 C Very nice to meet you! [+FAMILIARITY]
4 D What do you want?
5 C I have orders to assist you in moving this clinic to a safer location.
6 D You want to move the clinic?
7 C Yes [-SOLIDARITY]
Strategy shift: Avoid negotiating about move
8.1 D This conflict is madness, it is killing people!
8.2 D We need proper supplies here!
9 C It is not safe here we can’t protect you. [-CREDIBILITY]
10.1 D Protect me? Protect me from what?
10.2 D Are you going to attack?
11 C I can not disclose more information but it will be a problem to stay here.
12 D You are the problem your bombs are killing these people!
13 C Sir, we are trying to help these people too. [-CONTROL +SOLIDARITY]
Strategy shift: Disrupt negotiation about move
14.1 D The patients are here,
14.2 D to move the clinic is not possible we have many patients in critical condition.
15 C We can move you to a safer location.
16 D I can’t move all these patients.
17 C We can organise the transportation and assist you with the moving.
  [+SOLIDARITY]
18 D I can’t move all these patients.
19 C We can have locals move you. [+SOLIDARITY]
20 D There are no supplies there.
21 C We can provide you with the supplies you need to help your patients.
  [+SOLIDARITY]
Strategy shift: Willingly negotiate about move
22.1 D I think I understand what you say.
22.2 D Well perhaps we can reach an agreement,
22.3 D but before we can think about moving, we need you to bring antibiotics and
  plasma to stabilize the patients. [+INTERDEPENDENCE]
23 C We can do that! [+SOLIDARITY]
24.1 D Well,...
24.2 D Very well captain contact my assistant to make further arrangements.
25 C I’ll see to it personally. [+SOLIDARITY]
26.1 D I understand your position.
26.2 D My patients need my attention now.
27 C Thank you Doctor!
28.1 D Well,....
28.2 D I must go now
29 C Goodbye.
30 D Good bye.

Figure 4. More successful negotiation.

plan. Finally, the two participants reach an agreement including giving needed
supplies as part of the conditions of moving the clinic.

We can see several distinct phases of the dialogue in Figure 4, relating to
different negotiation strategies. The initial segment (turns 1–7 ) includes initial
greetings and establishing the topic for the conversation — the captain wants
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Figure 5. More relaxed and open doctor.

to move the clinic. In turns 8–12, the doctor engages in an avoidance strategy,
trying to avoid this topic by bringing up other issues, such as his need for
supplies, and the general problems of conflict. In turns 14−20, the doctor has
adopted an attack strategy, and points out problems with the proposed move.
In turns 22–25, the doctor adopts a more open negotiation strategy, and an
actual bargain is struck. Finally, turns 26–30 show a closing phase in which
the doctor disengages from the conversation, while the captain tries to establish
good relations for future interaction. Application of these strategies influences
not just the choice of dialogue move, but the whole body posture of the doctor
and use of gestures and expressions as well. For example, when the doctor is
feeling more distant and less trusting, he adopts a closed posture (Figure 2).
When he is more trusting and open to negotiation, the posture becomes more
relaxed (Figure 5).

6. Preliminary Evaluation and Future Directions
As part of the development of the system, we have so far tested the system
with over 50 different people acting as a trainee, most with several dialogues.
As of this writing we have not fully analyzed this data, however we can draw
some general conclusions. Usually people are able to have a coherent dialogue
with the Doctor, although some problems arise when concepts are brought up
that are beyond his vocabulary. An advantage of this domain is that when the
doctor is following an avoidance or attack strategy, it is natural for him to take
the initiative and complain about his own concerns rather than being directly
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responsive to the human’s utterance, so some non-understandings do not lead
to problems. Most people who talk to the doctor do not convince him in the
first session, however, a little bit of explaining of proper negotiating techniques
(e.g., build trust before arguing) generally leads to a successful negotiation in
a follow-up round.

Future work involves extension of the models to include additional negoti-
ation strategies, emotion-based styles of interaction within the strategies, and
application to other scenarios, some involving cultural differences in behaviour
and interpretation, as well as translated and multilateral dialogue.
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Abstract The quality experienced during the interaction with telephone-based spoken di-
alogue services results from a perception and judgement process. As a conse-
quence, quality has to be measured in a subjective way, with the help of human
test persons. To complement subjective quality judgements, parameters can be
logged which quantify the flow of the interaction, the behaviour of the user and
the system, and the performance of individual system modules during the in-
teraction. Although such parameters are not directly linked to the quality per-
ceived by the user, they provide useful information for system development,
optimisation, and maintenance. This chapter presents standardised methods for
both measurement approaches. Firstly, a brief overview of subjective evalua-
tion experiments is provided, following Recommendation P.851 issued by the
International Telecommunication Union. Secondly, a collection of parameters is
presented which has proven to be useful for system design. An initial evalua-
tion study in is described which shows that the parameters correlate only weakly
with subjective judgements; thus, both types of evaluation provide complemen-
tary types of information. Linear regression models may be used to predict sub-
jective judgements from interaction parameters, but their prediction accuracy is
still limited.

Keywords: Spoken dialogue system; subjective evaluation; interaction parameters; quality
prediction

1. Introduction
Speech technology devices, such as automatic speech recognition (ASR), spea-
ker verification, speech synthesis, or spoken dialogue systems (SDSs), pro-
vide an increasing number of automatic voice-enabled services in wireline
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and mobile telephone networks. In contrast to simple interactive voice res-
ponse systems with tone input, spoken dialogue systems offer the full range
of speech interaction capabilities, including the recognition of user speech, the
assignment of meaning to the recognised words, the decision on how to con-
tinue the dialogue, the formulation of a linguistic response, and the generation
of spoken output to the user. In this way, a more-or-less “natural” spoken in-
teraction between user and system is enabled.

In order to quantify the interaction quality with SDSs, the perceptions of the
human user have to be taken into account. In fact, quality has been defined in
ITU-T Rec. P.851 (2003) as the

result of appraisal of the perceived composition of the service with respect to its
desired composition.

This definition of quality, which is based on the concepts and terminology
introduced by Jekosch (2000, 2005), highlights two very important character-
istics:

1. Quality involves a perception and a judgement process.

2. Quality is a relative concept; it results from a comparison between the per-
ceived and the desired or expected.

These characteristics have consequences for the measurement of quality.
Firstly, quality can only be quantified with the help of perceiving and judging
humans, e.g. with test persons. Secondly, the reference to which the perceived
features are compared should reflect the one of the application situation. Thus,
in order to obtain valid quality measurements, the conditions under which an
interaction experiment is carried out in the laboratory should match the ones
of later system usage as closely as possible.

So far, quality has been addressed from the system user’s point of view.
However, the system designer has an interest in providing high-quality ser-
vices too, e.g. for reaching high acceptance rates and/or maximum profit. Sys-
tem designers need to have indications of the factors of the system and its
usage environment which potentially carry an influence on perceived quality.
If relationships between system characteristics and perceived quality can be
established, SDSs can be set up and optimised quite efficiently. The criterion
for system optimisation should be the best possible quality judgement of the
user, and not necessarily the highest performance of individual system comp-
onents.

In order to compare services and systems, a common set of evaluation meth-
ods and criteria has to be defined. For this aim, the Telecommunication Stan-
dardisation Sector of the International Telecommunication Union (ITU-T) set
up a new Recommendation describing subjective evaluation methods for tele-
phone services based on spoken dialogue systems (ITU-T Rec. P.851, 2003).
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This Recommendation addresses quality from a user’s point of view. Recently,
it has been complemented by a set of interaction parameters, addressing sys-
tem performance from a system developer’s and service operator’s point of
view. The parameters are summarised in ITU-T Suppl. 24 to P-Series Rec.
(2005). They help to quantify the flow of the interaction, the behaviour of the
user and the system, and the performance of the speech technology devices
involved in the interaction.

The present chapter provides an overview of subjective evaluation methods
and of interaction parameters which have been recommended by the ITU-T. It
is based on theoretical work which is described in Möller (2005b). Section 2
summarises the main aspects which have to be taken into account when col-
lecting users’ quality judgements in a subjective experiment. Exemplary judge-
ments have been collected in a case study with an SDS for controlling domestic
devices; these judgements will be analysed in Section 3, revealing the percep-
tual dimensions underlying the users’ judgements. Section 4 presents a brief
characterisation of interaction parameters, with respect to the interaction as-
pect they address and the measurement method which is required to determine
the parameter. The parameters are categorised and listed in Section 5. Sec-
tion 6 presents an initial evaluation of the set of parameters, showing their
correlation to subjective quality judgements and their contribution to predict-
ing quality, using linear regression models. Finally, Section 7 summarises the
main findings and identifies future work to obtain a reduced set of parameters
to be recommended by the ITU-T.

2. Subjective Evaluation of Dialogue Services
In this section, we report on subjective evaluation methods which aim at quan-
tifying the quality of dialogue services by means of experiments with human
test participants (“test subjects”). Such experiments are a specific way to as-
sess the quality of dialogue services, or of software products in general. They
are particularly suited to provide quantitative data, but may not reveal all is-
sues which are relevant for quality and usability. Thus, they should be supple-
mented by other types of evaluation and usability engineering principles, e.g.
the ones described in Shneiderman (2003), Nielsen (1994), and Nielsen and
Mack (1994).

Quantitative measurements of quality may be obtained best from laboratory
experiments carried out under controlled conditions, where test users interact
with the system to be evaluated. In case the system is still under development
and thus not fully available for the evaluation, parts of the system may be sim-
ulated in a so-called Wizard-of-Oz paradigm (Fraser, 1997). This allows deci-
sions on individual system components to be taken early in the design process,
and avoids costly reimplementation. Wizard-of-Oz simulations may also be
used to extrapolate quality for component performances which are beyond the
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current state of the art. The interactions are usually logged, and interaction
parameters can be extracted from the log files (see Section 4).

The results of subjective evaluation experiments reflect the characteristics of
the test user group. Characteristics like age and gender, physical status, speak-
ing rate, vocal effort, native language, dialect, or accent may have a strong
influence on the speech produced by the user, and subsequently on speech re-
cognition and understanding performance. As a consequence, quality judge-
ments obtained from a user group differing in the acoustic and language char-
acteristics might not reflect the quality which can be expected for the target
user group. User groups are however variable and ill-defined. A service which
is open to the general public will sooner or later be confronted with a large
range of different users. Testing with specified users outside the target user
group will therefore provide a measure of system robustness with respect to
the user characteristics.

In addition to these characteristics, judgements are influenced by the user’s
experience and expertise with the system, and with the task and/or domain the
service is designed for. Investigations show that user experience affects a large
range of speech and dialogue characteristics, e.g. the number of tasks solved
in a single dialogue, the interaction length (Delogu et al., 1993), the number
of in-vocabulary utterances, and the task completion rate (Kamm et al., 1997).
System familiarity may also lead to a reduced number of user inputs and help
messages, and to a reduced transaction time (Lamel et al., 2002).

Most dialogue systems which are available on the market enable task-orient-
ed interactions. Because of the lack of a real motivation, laboratory tests often
make use of experimental tasks which the participants have to carry out. The
experimental task provides an explicit goal, but this goal should not be con-
fused with a goal which a user would like to reach in a real-life situation.
Because of this discrepancy, valid user judgements on system helpfulness and
acceptability cannot easily be obtained in a laboratory test set-up.

Examples of experimental tasks are included in ITU-T Rec. P.851 (2003).
They are frequently presented in a graphical way, in order to avoid a direct
priming of the user’s language. A comparison between written and graphical
scenarios showed that the massive priming effect of written scenarios can be
nearly completely avoided by a graphical representation, but that the diver-
sity of linguistic items (total number of words, number of out-of-vocabulary
words) is similar in both cases (Dybkjær et al., 1995; Bernsen et al., 1998).
Thus, language diversity still has to be assured by collecting utterances from a
sufficiently high number of different users, e.g. in a field test situation.

In order to quantify perceived quality, test persons are asked to fill in ques-
tionnaires before the actual experiment, after each interaction with the system,
and at the end of the whole experiment. Such questionnaires are designed to
collect as many different quality aspects as possible from the user.
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Questionnaires given before the experiment usually contain questions re-
lated to the user’s background, namely some personal information (age, gender,
profession, etc.), some task-related information (frequency of the task, usual
approach to resolve the task, alternative interfaces, etc.), as well as system-
related information (experience with tone-based systems or SDSs). Question-
naires relating to an individual interaction may extract diagnostic information
on the behaviour of the system in that particular interaction, for example re-
lated to

The information obtained from the system, e.g. availability, accuracy,
completeness, consistency, reliability, clarity, or truth

The system’s speech input and output capability, e.g. perceived system
understanding, frequency of system errors, perceived system reasoning,
listening effort required to understand the system’s messages, perceived
intelligibility, or perceived comprehensibility

The system’s interaction behaviour, e.g. transparency of the interaction,
congruence with the user’s expectations, flexibility of the interaction,
perceived reliability of system processing, distribution of initiative, in-
teraction control capability, confirmation and correction capabilities, re-
covery from interaction problems, naturalness of the interaction, length
of the dialogue, perceived system speed, or smoothness of the dialogue

The perceived system personality, e.g. friendliness or politeness

The impression the interaction leaves with the user, e.g. perceived natu-
ralness of the user’s own behaviour, pleasantness, cognitive demand put
on the user, stress, or fluster

The perceived task fulfilment, e.g. in terms of task success and reliability
of the task results

Finally, questionnaires given after the experiment may use similar questions,
but the judgements then relate to the overall experience made with the ser-
vice so far. In this case, very analytic questions should be avoided. Example
questionnaires are given in ITU-T Rec. P.851 (2003).

3. Multidimensional Analysis of Subjective
Quality Judgements

The questionnaires described above usually contain a large number of ques-
tions related to a diversity of quality aspects. Although the evaluator can select
individual questions according to the aim of the evaluation (e.g. a comparative
assessment of the performance of individual system modules, or a diagnostic
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assessment to identify system weaknesses), it is interesting to analyse which
dimensions of perceived quality can be distinguished at all with such a ques-
tionnaire.

For this aim, a multidimensional analysis has been carried out in the frame
of the EC-funded IST project INSPIRE (INfotainment management with SPe-
ech Interaction via REmote microphones and telephone interfaces). In this
project, a prototype of a spoken dialogue system for controlling domestic de-
vices (lamps, blinds, video recorder, answering machine, etc.) has been set
up. The prototype has been evaluated in a controlled laboratory experiment at
IKA, Ruhr-Universität Bochum. Because the speech recogniser was not avail-
able when the experiment was carried out, it had to be replaced by a human
transcriber, making this a partly Wizard-of-Oz-based experiment.

During this experiment, 24 test users interacted with the system in a realistic
home environment, following 3 scenario-guided interactions, each comprising
several tasks. After each interaction, users were asked to fill in a questionnaire
with 37 statements which has been designed following the methodology of
ITU-T Rec. P.851 (2003). The statements were presented either on continuous
rating scales which were labelled with describing attributes (with overflow ar-
eas in order to avoid saturation of user ratings at the extremities of the scale),
or on 5-point Likert scales, see Figure 1. Details on the experimental set-up
and on the individual statements are given in Möller et al. (2006).

The ratings have been transformed into numbers and then analysed using a
principal component analysis with Varimax rotation and Kaiser normalisation
(pairwise exclusion of missing values). This analysis reveals eight components,
resulting in 72.6% of the variance covered by the cumulated factors. The com-
ponents were interpreted on the basis of statements which have loadings higher
than or equal to +/−0.6 as follows:

1. Acceptability: Highest loadings are observed for the question whether the
service would be used again, or whether a different interface would be
preferred for carrying out the given tasks.

bad Poor fair good excellent

agree undecided disagree

Overall Impression of the interaction with the INSPIRE system:

The system didn't always do what I wanted.

strongly agree strongly disagree

Figure 1. Examples of rating scales used in the experiment. Upper panel: Continuous rating
scale according to Bodden and Jekosch (1996); lower panel: Likert-type category rating scale.
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2. Cognitive demand: Highest loadings were found for the required concen-
tration and the stress imposed on the user.

3. Task efficiency: This dimension shows high loadings on task success, on
the clarity of the provided information, and on the transparency of the
system behaviour.

4. System errors: This dimension reflects the frequency of system errors and
the reliability of the system.

5. Ease of use: This dimension includes the ease of listening and the ease of
learning how to use the system.

6. System cooperativity: This dimension observes whether the system behaves
in a cooperative way or not.

7. This dimension shows two high loadings which cannot be interpreted in
combination: The naturalness of the system voice, and the symmetry of
the dialogue.

8. Speed of the interaction: This dimension loads on the speed and the length
of the interaction.

The extracted dimensions may be somehow specific for the tested system
and for the user group. In addition, the sample size of this study was quite lim-
ited. Thus, the dimensions extracted from our database should be seen as an
initial result only. In order to come to dimensions which somehow generalise
across systems and user groups, the results have been compared to dimensions
extracted from other experiments (Möller, 2005a), namely from the evaluation
of automated credit-card payment services (Love et al., 1994; Jack et al., 1992),
from the SASSI study addressing different dialogue services (Hone and Gra-
ham, 2000), from the ELSNET Olympics (den Os and Bloothooft, 1998), and
from a telephone-based restaurant information system (Möller, 2005b). The
result of this comparison in depicted in Figure 2.

The classification shows five perceptual dimensions which are extracted in
most of the described experiments:

1. Acceptability: This dimension covers task success, future use, reliability,
the perceived control capability, as well as the enjoyment or frustration
experienced when using the system. It is most closely related to overall
quality and user satisfaction

2. Communication efficiency: This dimension often perceived as the speed of
the interaction

3. Cognitive effort: This dimension comprises stress, fluster, cognitive demand,
confidence in the system, and perceived annoyance
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Quality Aspects Love et al. Jack et al. Hone &
Graham

den Os &
Bloothooft

Möller INSPIRE

Functionality
Task success
Future use
Reliability
Control/complex.
Enjoyment/frust.

Com. efficiency
Stress/fluster
Cogn. demand
Confidence
Annoyance
User attitude
Comp. interface
Friendli./Politen.
Intellig./Clarity
Perc. control
Complexity
Confusion
Transparency
Ease of use

Cooperativity
Language prof.
Familiarity
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Figure 2. Comparison of perceptual quality dimensions extracted from different experiments.
Cx indicates the corresponding factors extracted from the factor analysis. See text for literature
references.

4. Personality: This dimension includes the perceived politeness and friend-
liness, intelligibility and clarity of system speech, the general user atti-
tude towards the system, as well as the preference for other interfaces
performing the same task

5. Smoothness: This dimension is characterised by the perceived control over
the interaction, the complexity and confusion caused by the dialogue,
the transparency of the interaction, and the ease of use

Apart from these five common dimensions, “cooperativity” has been ex-
tracted as a separate dimension in the INSPIRE experiment, and the ELSNET
Olympics also revealed the user-related dimensions “language proficiency”
and “familiarity” with dialogue systems. In fact, the ELSNET Olympics were
carried out with conference participants as a specific user group, evaluating
systems mostly not in their mother tongue. This finding emphasises that per-
ceptual dimensions may be specific to individual systems and user groups.

4. Characteristics of Interaction Parameters
Interaction parameters can be extracted when real or test users interact with
the telephone service under consideration. The extraction is performed on the
basis of log files, be it instrumentally or with the help of a transcribing and
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annotating expert. Parameters which relate to the surface form of the utter-
ances exchanged between user and system, like the duration of the interaction
or the number of turns, can usually be measured fully instrumentally. On the
other hand, human transcription and annotation is necessary when not only the
surface form (speech signals) is addressed, but also the contents and meaning
of system or user utterances (e.g. to determine a word or concept accuracy).
Both (instrumental and expert-based) ways of collecting interaction parame-
ters should be combined in order to obtain as much information as possible.

Because interaction parameters are based on data which has been collected
in an interaction between user and system, they are influenced by the charac-
teristics of the system, of the user, and of the interaction between both. These
influences cannot be separated, because the user’s behaviour is strongly in-
fluenced by that of the system (e.g. the questions asked by the system), and
vice versa (e.g. the vocabulary and speaking style of the user influences the
system’s recognition and understanding accuracy). Consequently, interaction
parameters strongly reflect the characteristics of the user group they have been
collected with.

Interaction parameters are either determined in a laboratory test setting un-
der controlled conditions, or in a field test. In the latter case, it may not be
possible to extract all parameters, because not all necessary information can be
gathered. For example, if the success of a task-oriented interaction (e.g. col-
lection of a train timetable) is to be determined, then it is necessary to know
about the exact aims of the user. Such information can only be collected in a
laboratory setting, e.g. in the way it is described in Section 2.

Interaction parameters can be calculated at word level, at sentence or ut-
terance level, or at the level of a full interaction or dialogue. In case of word
or utterance level parameters, average values are often calculated for each dia-
logue. The parameters collected with a specific group of users may be analysed
with respect to the impact of the system (version), the user group, and the
experimental setting (scenarios, test environment, etc.), using standard statis-
tical methods. A characterisation of these influences can be found in Möller
(2005b).

5. Review of Interaction Parameters
Based on a broad literature survey, parameters were identified which have been
used in different assessment and evaluation experiments during the last 15
years. The respective literature includes Billi et al. (1996), Boros et al. (1996),
Carletta (1996), Cookson (1988), Danieli and Gerbino (1995), Fraser (1997),
Gerbino et al. (1993), Glass et al. (2000), Goodine et al. (1992), Hirschman
and Pao (1993), Kamm et al. (1998), Polifroni et al. (1992), Price et al. (1992),
SanSegundo et al. (2001), Simpson and Fraser (1993), Skowronek (2002),
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Strik et al. (2000), Strik et al. (2001), van Leeuwen and Steeneken (1997),
Walker et al. (1997), Walker et al. (1998) and Zue et al. (2000).

The parameters can broadly be classified as follows:

Dialogue- and communication-related parameters

Meta-communication-related parameters

Cooperativity-related parameters

Task-related parameters

Speech-input-related parameters

These categories will be briefly discussed in the following sections. The re-
spective parameters are listed in an appendix to this chapter, together with
a definition, the interaction level addressed by the parameter (word, utter-
ance or dialogue), as well as the measurement method (instrumental or expert
annotation).

5.1 Dialogue- and Communication-Related
Parameters

Parameters which refer to the overall dialogue and to the communication of
information give a very rough indication of how the interaction takes place.
They do not specify the communicative function of each individual utterance in
detail. These parameters are listed in Tables 4.A.1 and 4.A.2 of the Appendix,
and include duration-related parameters (overall dialogue duration, duration of
system and user turns, system and user response delay), and word- and turn-
related parameters (average number of system and user turns, average number
of words per system and per user turn, number of system and user questions).

Two parameters which have been proposed by Glass et al. (2000) are worth
noting: The query density gives an indication of how efficiently a user can pro-
vide new information to a system, and the concept efficiency describes how
efficiently the system can absorb this information from the user. These para-
meters also refer to the system’s language understanding capability, but they
have been included in this section because they result from the system’s inter-
action capabilities as a whole, and not purely from the language understanding
capabilities.

All parameters in this category are of global character and refer to the dia-
logue as a whole, although they are partly calculated at utterance level. Global
parameters are sometimes problematic, because the individual differences in
cognitive skill may be large in relation to the system-originated differences,
and because test participants might learn strategies for task solution which have
a significant impact on global parameters.
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5.2 Meta-Communication-Related Parameters
Meta-communication, i.e. the communication about communication, is partic-
ularly important for the spoken interaction with systems which have limited
recognition, understanding and reasoning capabilities. In this case, correction
and clarification utterances or even subdialogues are needed to recover from
misunderstandings.

The parameters belonging to this group quantify the number of system and
user utterances which are part of meta-communication. Most of the parameters
are calculated as the absolute number of utterances in a dialogue which relate
to a specific interaction problem, and are then averaged over a set of dialogues.
They include the number of help requests from the user, of time-out prompts
from the system, of user utterances rejected by the system in the case that no
semantic content could be extracted (ASR rejections), of diagnostic system
error messages, of barge-in attempts from the user, and of user attempts to
cancel a previous action.

The ability of the system (and of the user) to recover from interaction prob-
lems can be described in two ways: Either explicitly by the correction rate, i.e.
the percentage of all (system or user) turns which are primarily concerned with
rectifying an interaction problem, or implicitly with the implicit recovery pa-
rameter, which quantifies the capacity of the system to regain utterances which
have partially failed to be recognised or understood.

In contrast to the global measures, most meta-communication-related para-
meters describe the function of system and user utterances in the communi-
cation process. Thus, most parameters have to be determined with the help of
an annotating expert. The parameters are listed in Tables 4.A.3 to 4.A.5 of the
Appendix.

5.3 Cooperativity-Related Parameters
Cooperativity has been identified as a key aspect for a successful interaction
with a spoken dialogue system (Bernsen et al., 1998). Unfortunately, it is dif-
ficult to quantify whether a system behaves cooperatively or not. Several of
the dialogue- and meta-communication-related parameters somehow relate to
system cooperativity, but they do not attempt to quantify this aspect.

Direct measures of cooperativity are the contextual appropriateness para-
meters introduced by Simpson and Fraser (1993). Each system utterance has
to be judged by a number of experts as to whether it violates one or more of
Grice’s maxims for cooperativity (see Grice, 1975). These principles have been
stated more precisely by Bernsen et al. (1998) with respect to spoken dialogue
systems.
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The utterances are classified into the categories of appropriate (not violating
Grice’s maxims), inappropriate (violating one or more maxims), incomprehen-
sible (the content of the utterance cannot be discerned in the dialogue context),
or total failure (no linguistic response from the system). It has to be noted that
the classification is not always straightforward, and that interpretation princi-
ples may be necessary.

5.4 Task-Related Parameters
Current state-of-the-art telephone services enable task-oriented interactions be-
tween system and user, and task success is a key issue for the usefulness of a
service. Task success may be defined on a per-dialogue basis (thus taking into
account all subtasks addressed in a dialogue), or on a per-subtask basis. It may
best be determined in a laboratory situation where explicit tasks are given to
the test participants (see Möller, 2005b). However, realistic measures of task
success have to take into account potential deviations from the scenario by
the user, either because he/she did not pay attention to the instructions given
in the scenario, because of his/her inattentiveness to the system utterances, or
because the task was irresolvable and had to be modified in the course of the
dialogue.

Modification of the experimental task is considered in most definitions of
task success which are reported in the literature. Success may be reached by
simply providing the right answer to the constraints set in the instructions, by
constraint relaxation by the system or by the user (or both), or by spotting that
no solution exists for the defined task. Task failure may be tentatively attributed
to the system’s or to the user’s behaviour, the latter however being influenced
by the one of the system.

A different approach to determine task success is the κ coefficient (Carletta,
1996; Walker et al., 1997). It normalises for task complexity, and thus enables
a better comparison between different tasks and applications. The calculation
of κ assumes a speech-understanding approach which is based on attributes
(concepts, slots) for which allowed values have to be assigned in the course
of the dialogue, resulting in attribute-value-pairs (AVPs). A set of all available
attributes together with the values assigned by the task (a so-called attribute-
value matrix, AVM) completely describes a task which can be carried out with
the help of the system. In order to determine the κ coefficient, a confusion ma-
trix M(i, j) is set up for the attributes in the key (scenario definition) and in the
reported solution (log file of the dialogue). Then, the agreement between key
and solution P (A) and the chance agreement P (E) can be calculated from
this matrix (see Table 4.A.7). M(i, j) can be calculated for individual dia-
logues, or for a set of dialogues which belong to a specific system or system
configuration.
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The κ coefficient relies on the availability of a simple task coding scheme,
namely in terms of an AVM. However, some tasks cannot be characterised as
easily. In that case, more elaborated approaches to task success are needed,
approaches which usually depend on the type of task under considera-
tion. Dialogue success measures for non-task-oriented SDSs are still under
development.

5.5 Speech Input-Related Parameters
The speech input capability of a spoken dialogue system is determined by its
capability to recognise words and utterances, and to extract the meaning from
the recognised string. The speech recognition task can be categorised into iso-
lated word recognition, keyword spotting, or continuous speech recognition.
Speech understanding is often performed on the basis of attribute-value pairs,
see the previous section. The parameters described in the following paragraph
address both speech recognition and speech understanding.

Continuous speech recognisers generally provide a word string hypothesis
which has to be aligned with a reference transcription produced by an annotat-
ing expert. On the basis of the alignment, the number of correctly determined
words cw, of substitutions sw, of insertions iw, and of deletions dw is counted.
These counts can be related to the total number of words in the reference nw,
resulting in two alternative measures of recognition performance, the word er-
ror rate WER and the word accuracy WA, see Table 4.A.8.

Complementary performance measures can be defined at sentence level, in
terms of sentence accuracy, SA, or sentence error rate, SER, see Table 4.A.8.
In general, sentence accuracy is lower than word accuracy, because a single
misrecognised word in a sentence impacts the SA parameter. It may however
become higher than the word accuracy, especially when many single-word sen-
tences are correctly recognised.

The fact that SER and SA penalise a whole utterance when a single mis-
recognised word occurs has been pointed out by Strik et al. (2000, 2001). The
problem can be circumvented by calculating the average number of errors per
sentence, NES, or the word error per sentence, WES (see Table 4.A.9). When
utterances are not separated into sentences, all sentence-related metrics can
also be calculated at utterance level instead of at sentence level.

Isolated word recognisers provide an output hypothesis for each input word
or utterance. Input and output words can be directly compared, and similar
performance measures as in the continuous recognition case can be defined,
omitting the insertions. Instead of the insertions, the number of “false alarms”
in a time period can be counted, see vanLeeuwen and Steeneken (1997). WA
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and WER can also be determined for keywords only, when the recogniser
operates in a keyword-spotting mode.

For speech understanding assessment, two common approaches have to be
distinguished. The first one is based on the classification of system answers
to user questions into categories of correctly answered, partially correctly an-
swered, incorrectly answered, or failed answers. The individual answer cate-
gories can be combined into measures which have been used in the US DARPA
program, see Tables 4.A.9 and 4.A.10. The second way is to classify the sys-
tem’s parsing capabilities, either in terms of correctly parsed utterances, or of
correctly identified AVPs. On the basis of the identified AVPs, global mea-
sures such as the concept accuracy CA, the concept error rate CER, or the
understanding accuracy UA can be calculated. These parameters are listed in
Table 4.A.11.

5.6 Further Parameters
When separating the quality of an SDS-based service into quality aspects, in
the way which is indicated in Möller (2005b), it can be observed that several
aspects of quality are not addressed by interaction parameters. No parameters
directly relate to usability, user satisfaction, acceptability, or speech output
quality. So far, only very few approaches have been made which address the
quality of speech output (be it concatenated or synthesised) in a parametric
way. Instrumental measures related to speech intelligibility are defined, e.g.,
in IEC Standard 60268-16 (1988), but they have not been designed for a tele-
phone environment. Concatenation cost measures have been proposed which
can be calculated from the input text and the speech database of a concatena-
tive synthesis system (Chu and Peng, 2001). Although they sometimes show
high correlations to mean opinion scores obtained in subjective experiments,
such measures are very specific to the speech synthesiser and its concatenation
corpus.

6. Initial Evaluation of Interaction Parameters
In order to determine the relationship between subjective user judgements and
interaction parameters, the interactions of the INSPIRE experiment have been
logged, transcribed and annotated using a specifically designed annotation in-
terface (Skowronek, 2002; Möller, 2005b). From the annotation, 64 parameters
could be extracted for each interaction which are mainly identical to the ones
listed in Section 5. Thus, the user judgements analyzed in Section 3 are com-
plemented by interaction parameters, reflecting the same set of interactions
with a prototypical system. Details on the experiment can be found again in
Möller et al. (2006).
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6.1 Correlation between Interaction Parameters
and User Judgements

From this database, correlations between interaction parameters and subjective
judgements have been calculated. Because several interaction parameters and
user judgements do not follow a Gaussian distribution, Spearman rank-order
correlations ρ have been chosen. The results were disappointing at first sight:
The highest coefficients were around 0.6.

Interestingly, quality-related information seems to be captured mostly in
the speech-recognition- and speech-understanding-related parameters. This
is astonishing, because the (simulated) recognition accuracy of the INSPIRE
system was nearly perfect (mean WA = 97.2%). The recognition-related
parameters were shown to have correlations of up to 0.6 with interaction
control, up to 0.52 with interaction pleasantness, up to 0.47 with the dif-
ficulty of operation, up to 0.43 with system helpfulness, up to 0.42 with
dialogue smoothness, and up to 0.40 with error recovery. The correlation
between speech-recognition- and speech-understanding-related parameters
is only moderate, justifying measuring both types of parameters to obtain
a maximum of information. Perceived system understanding correlates only
moderately with the measured understanding accuracy, UA (ρ = 0.41).

With respect to efficiency, humans do not seem to be adequate measurement
instruments either. The correlation between the perceived length of a dialogue
and DD (communication efficiency) is very low, as well as the correlation be-
tween annotated and perceived task success (task efficiency). The subjective
judgement on overall quality seems to be mainly dominated by the characteris-
tics of the system turns (STD: ρ = 0.40), by the understanding accuracy (UA:
ρ = 0.39; UCT : ρ = 0.36), and by the recognition accuracy (ρ between 0.39
and 0.42). Still, this correlation is not high enough to be able to predict overall
system quality on the basis of individual interaction parameters.

6.2 Quality Prediction Models
More sophisticated models have been developed to predict system usability
and acceptability from a combination of parameters. The most popular ap-
proach is the PARADISE framework developed by Walker et al. (1997, 1998).
The model aims at predicting “user satisfaction”, which is calculated as an
arithmetic mean over several user judgements on different quality aspects, as
a linear combination of several interaction parameters. In its original version,
Walker et al. used 8–9 interaction parameters as input to the model, including a
subjective judgement on task success. The weighting coefficients of the linear
prediction function are determined by the help of a multivariate linear regres-
sion analysis, using a database of user judgments and interaction parameters
which have been collected under controlled (laboratory) conditions.
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From the INSPIRE database, several PARADISE-style models have been
calculated, using different user judgements as the prediction target (judgement
on “overall quality”, “user satisfaction”, or the arithmetic mean over all 37
judgements), and several sets of interaction parameters as the input variables
(full set of 64 parameters or restricted set of 5 parameters similar to Walker
et al. (1997)). In particular, 2 types of parameters have been used for describing
task success: Either an expert-derived weighted task success index TSe (which
is calculated from the TS labels of Table 4.A.7, assigning a value of one for
each sub-task which has been successfully achieved by the user, and a value of
zero for all failures), or a user judgement of task success TSu (as it was the
case in the experiments reported in Walker et al. (1997, 1998). The regression
algorithm used a stepwise (forward–backward) inclusion of parameters (for 64
parameters) or a forced inclusion of all parameters (for 5 parameters only), did
not include a constant term, and replaced missing values by their respective
means.

The results are shown in Table 1. Indicated is the amount of variance in the
subjective judgements which can be covered by the respective model (R2

corr)
and the number of input parameters selected by the regression algorithm. For
the large set of input parameters, R2

corr reaches 0.46 in the best case, which is
comparable to the prediction accuracy reported by Walker et al. (1997, 1998).
However, when using only the restricted set of parameters as an input to the
regression analysis, the prediction accuracy is much lower. The user-derived
judgement of task success leads in all cases to better prediction results; it is
particularly important when only few input parameters are available. All in all,
the prediction accuracy does not depend on the number of input parameters,
but on their informative value.

Table 1. Regression models.

Input parameters Target variable Prediction result

# Parameters Task success R2
corr # Parameters

64 TSe Overall quality 0.247 2
64 TSe User satisfaction 0.409 4
64 TSe Mean of all judgments 0.420 4
64 TSu Overall quality 0.409 3
64 TSu User satisfaction 0.409 4
64 TSu Mean of all judgments 0.459 3
5 TSe Overall quality 0.091 5
5 TSe User satisfaction 0.022 5
5 TSe Mean of all judgements 0.133 5
5 TSu Overall quality 0.310 5
5 TSu User satisfaction 0.086 5
5 TSu Mean of all judgements 0.305 5
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7. Conclusions
An overview has been presented of subjective evaluation methods and in-
teraction parameters for spoken dialogue systems. The former provide direct
measurements of quality, the latter quantitative descriptions of the interaction
between the user and the system. Interaction parameters can be used in the
design, implementation, optimisation and operation phase of SDS-based ser-
vices. They provide important information to the system developer, but no di-
rect measures of quality, as it would be perceived by the user of the respective
service.

Reliable quality judgements may be obtained for example in laboratory ex-
periments carried out under controlled conditions. Using questionnaires with a
number of rating scales, different aspects of interaction quality, system usabil-
ity, user satisfaction and acceptability may be obtained. A multidimensional
analysis of user judgements obtained with an exemplary system revealed five
perceptual dimensions underlying the users’ judgements which were somehow
stable across systems and users: Acceptability, communication efficiency, cog-
nitive effort, system personality and dialogue smoothness.

Definitions have been provided for five categories of interaction parameters,
based on a broad literature survey. This set has been evaluated in a pilot exper-
iment, showing that the correlation between individual interaction parameters
and subjective user judgements is indeed relatively low: Highest correlations
were in the area of 0.6, and for overall quality not higher than 0.42. Thus, sub-
jective quality judgements and interaction parameters provide complementary
information to the evaluator.

Despite the low correlation, a combination of parameters can be used to
predict overall quality or user satisfaction. Exemplary models have been cal-
culated for the INSPIRE data, using a linear regression model as it was defined
by the PARADISE framework. The models captured about 45% of the variance
in the subjective data, provided that the right – informative – parameters are
selected as input to the model. Still, this value is too low to replace subjective
quality judgements by interaction parameters when the quality of SDS-based
services is to be measured.

Both methods – subjective evaluation and parametric description of inter-
actions – have been recommended by the ITU-T for telephone-based spo-
ken dialogue services (ITU-T Rec. P.851, 2003; ITU-T Suppl. 24 to P-Series
Rec., 2005). However, the set of interaction parameters described here is
still very large, carrying in mind that most parameters rely on expert an-
notation. As soon as further evaluation data obtained with the described
methods becomes available, the full set of interaction parameters should be
reduced to parameters which have proven to be relevant for quality. Such a
restricted set will form the basis for a new Recommendation P.PST which
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will be developed by ITU-T SG12 in the next 1–2 years. It may also be
used as input to quality prediction models; a Recommendation for such mod-
els is foreseen in the near future. Contributions to both Recommendation
projects are invited by the ITU-T, see roadmap on http://www.itu.int/ITU-
T/studygroups/com12/q12roadmap/index.html.

The evaluation methods addressed here are limited in several ways. Alth-
ough the INSPIRE prototype used in the case study provides visual output as
well, the evaluation metrics were limited to the speech modality. Evaluation
metrics for multimodal dialogue systems are still under study (see Dybkjaer
et al., 2004 for a discussion). In addition, it is assumed that the dialogue is
task-oriented. For non-task-oriented dialogues, notions like “communication
efficiency” or “task efficiency” will have a different signification. First steps
for the evaluation of such systems have been presented recently (Bernsen and
Dybkjær, 2005), but they are not yet conclusive.
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Appendix: Definition of Interaction Parameters

Table 4.A.1. Dialogue- and communication-related parameters (1). Interaction level: word,
utt. (utterance), dial. (dialogue); measurement method: instr. (instrumental), exp. (expert-based).

Abbr. Name Definition Int.
level

Meas.
meth.

DD Dialogue
duration

Overall duration of a dialogue in ms (see,
e.g. Fraser, 1997)

dial. instr.

STD System turn
duration

Average duration of a system turn, from the
system starting speaking to the system stop-
ping speaking, in ms. A turn is an utterance,
i.e. a stretch of speech spoken by one party
in the dialogue (Fraser, 1997)

utt. instr.

UTD User turn
duration

Average duration of a user turn, from the
user starting speaking to the user stopping
speaking, in ms (Fraser, 1997)

utt. instr.

SRD System
response delay

Average delay of a system response, from
the user stopping speaking to the system
starting speaking, in ms (Fraser, 1997)

utt. instr.

URD User response
delay

Average delay of a user response, from the
system stopping speaking to the user start-
ing speaking, in ms (Fraser, 1997)

utt. instr.

# Turns Number of turns Overall number of turns uttered in a dia-
logue (Walker et al., 1998)

dial. instr./
exp.

# System
turns

Number of
system turns

Overall number of system turns uttered in a
dialogue (Walker et al., 1998)

dial. instr./
exp.

# User
turns

Number of user
turns

Overall number of user turns uttered in a
dialogue (Walker et al., 1998)

dial. instr./
exp.

WPST Words per
system turn

Average number of words per system turn
in a dialogue (Cookson, 1988)

utt. instr./
exp.

WPUT Words per user
turn

Average number of words per user turn in a
dialogue (Cookson, 1988)

utt. instr./
exp.

# System
questions

Number of
system
questions

Overall number of questions from the sys-
tem per dialogue.

dial. exp.

# User
questions

Number of user
questions

Overall number of questions from the
user per dialogue (Polifroni et al., 1992;
Goodine et al., 1992)

dial. exp.
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Table 4.A.2. Dialogue- and communication-related parameters (2).

Abbr. Name Definition Int.
level

Meas.
meth.

QD Query density Average number of new concepts (slots) in-
troduced per user query. Being nd the num-
ber of dialogues, nq(i) the total number of
user queries in the ith dialogue, and nu(i)
the number of unique concepts correctly “un-
derstood” by the system in the ith dialogue,
then

QD =
1

nd

nd�

i=1

nu(i)

nq(i)

A concept is not counted to nu(i) if the sys-
tem has already “understood” it from a previ-
ous utterance (Glass et al., 2000)

set
of
dial.

exp.

CE Concept
efficiency

Average number of turns necessary for each
concept to be “understood” by the system.
Being nd the number of dialogues, nu(i) the
number of unique concepts correctly “under-
stood” by the system in the ith dialogue, and
nc(i) the total number of concepts in the ith
dialogue, then

CE =
1

nd

nd�

i=1

nu(i)

nc(i)

A concept is counted whenever it was uttered
by the user and was not already “understood”
by the system (Glass et al., 2000)

set
of
dial.

exp.

Table 4.A.3. Meta-communication-related parameters (1).

Abbr. Name Definition Int.
level

Meas.
meth.

# Help
requests

Number of help
requests

Overall number of user help requests in a
dialogue. A user help request is labelled by
the annotation expert if the user explicitly
asks for help. This request may be formu-
lated as a question (e.g. “What are the avail-
able options?”) or as a statement (“Give
me the available options!”) (Walker et al.,
1998)

utt. exp.
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Table 4.A.4. Meta-communication-related parameters (2).

Abbr. Name Definition Int.
level

Meas.
meth.

# System
help

Number of
diagnostic
system help
messages

Overall number of help messages generated
by the system in a dialogue. A help message
is a system utterance which informs the user
about available options at a certain point in
the dialogue

utt. instr./
exp.

#
Time-out

Number of
time-out
prompts

Overall number of time-out prompts, due
to no response from the user, in a dialogue
(Walker et al., 1998)

utt. instr.

# ASR
rejection

Number of ASR
rejections

Overall number of ASR rejections in a dia-
logue. An ASR rejection is defined as a sys-
tem prompt indicating that the system was
unable to “hear” or to “understand” the user,
i.e. that the system was unable to extract
any meaning from a user utterance (Walker
et al., 1998)

utt. instr.

# System
error

Number of
diagnostic
system error
messages

Overall number of diagnostic error mes-
sages from the system in a dialogue. A diag-
nostic error message is defined as a system
utterance in which the system indicates that
it is unable to perform a certain task or to
provide a certain information (Price et al.,
1992)

utt. instr./
exp.

#
Barge-in

Number of user
barge-in
attempts

Overall number of user barge-in attempts
in a dialogue. A user barge-in attempt is
counted when the user intentionally ad-
dresses the system while the system is still
speaking. In this definition, user utterances
which are not intended to influence the
course of the dialogue (laughing, expres-
sions of anger or politeness) are not counted
as barge-ins (Walker et al., 1998)

utt. exp.

# Cancel Number of user
cancel attempts

Overall number of user cancel attempts in a
dialogue. A user turn is classified as a can-
cel attempt if the user tries to restart the
dialogue from the beginning, or if he/she
explicitly wants to step one or several lev-
els backwards in the dialogue hierarchy
(Kamm et al., 1998; San-Segundo et al.,
2001)

utt. exp.
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Table 4.A.5. Meta-communication-related interaction parameters (3).

Abbr. Name Definition Int.
level

Meas.
meth.

SCT ,
SCR

Number of
system
correction turns,
system
correction rate

Overall number (SCT ) or percentage
(SCR) of all system turns in a dialogue
which are primarily concerned with rectify-
ing a “trouble”, thus not contributing new
propositional content and interrupting the
dialogue flow. A “trouble” may be caused
by speech recognition or understanding er-
rors, or by illogical, contradictory, or unde-
fined user utterances. In case that the user
does not give an answer to a system ques-
tion, the corresponding system answer is la-
belled as a system correction turn, except
when the user asks for information or for an
action which is not supported by the current
system functionality (Simpson and Fraser,
1993; Gerbino et al., 1993)

utt. exp.

UCT ,
UCR

Number of user
correction turns,
user correction
rate

Overall number (UCT ) or percentage
(UCR) of all user turns in a dialogue which
are primarily concerned with rectifying a
“trouble”, thus not contributing new propo-
sitional content and interrupting the dia-
logue flow (see SCT , SCR) (Simpson and
Fraser, 1993; Gerbino et al., 1993)

utt. exp.

IR Implicit
recovery

Capacity of the system to recover from user
utterances for which the speech recognition
or understanding process partly failed. De-
termined by labelling the partially parsed
utterances (see definition of PA:PA) as to
whether the system response was “appropri-
ate” or not:

IR =
# utt. with appropriate syst. answer

PA:PA

For the definition of “appropriateness” see
Grice (1975) and Bernsen et al. (1998)
(Danieli and Gerbino, 1995)

utt. exp.
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Table 4.A.6. Cooperativity-related parameters.

Abbr. Name Definition Int.
level

Meas.
meth.

CA Contextual
appropriate-
ness

Overall number of system utterances which are
judged to be appropriate in their immediate di-
alogue context. Determined by labelling utter-
ances according to whether they violate one or
more of Grice’s maxims for cooperativity:

– CA:AP : Appropriate, not violating
Grice’s maxims, not unexpectedly con-
spicuous or marked in some way.

– CA:IA: Inappropriate, violating one or
more of Grice’s maxims.

– CA:TF : Total failure, no linguistic re-
sponse.

– CA:IC: Incomprehensible, content
cannot be discerned by the annotation
expert.

For more details see Simpson and Fraser (1993)
and Gerbino et al. (1993); the classification is
similar to the one adopted in Hirschman and
Pao (1993).

utt. exp.
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Table 4.A.7. Task-related parameters.

Abbr. Name Definition Int.
level

Meas.
meth.

TS Task
success

Label of task success according to whether the user has
reached his/her goal by the end of a dialogue, provided
that this goal could be reached with the help of the sys-
tem. The labels indicate whether the goal was reached or
not, and the assumed source of problems:

– S: Succeeded (tasks for which solutions exist).

– SCs: Succeeded with constraint relaxation by
the system.

– SCu: Succeeded with constraint relaxation by
the user.

– SCuCs: Succeeded with constraint relaxation
both from the system and from the user.

– SN : Succeeded in spotting that no solution ex-
ists.

– Fs: Failed because of the system’s behaviour,
due to system inadequacies.

– Fu: Failed because of the user’s behaviour, due
to non-cooperative user behaviour.

See also Fraser (1997), Simpson and Fraser (1993) and
Danieli and Gerbino (1995)

dial. exp.

κ Kappa
coeffi-
cient

Percentage of task completion according to the kappa
statistics. Determined on the basis of the correctness of
the result AVM reached at the end of a dialogue with
respect to the scenario (key) AVM. A confusion matrix
M(i, j) is set up for the attributes in the result and in the
key, with T the number of counts in M , and ti the sum
of counts in column i of M . Then

κ =
P (A) − P (E)

1 − P (E)

with P (A) being the proportion of times that the AVM
of the actual dialogue and the key agree, P (A) =
�n

i=1
M(i,i)

T
. P (E) can be estimated from the propor-

tion of times that they are expected to agree by chance,
P (E) =

�n
i=1(

ti
T

)2 (Carletta, 1996; Walker et al.,
1997)

dial.
or
set
of
dial.

exp.
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Table 4.A.8. Speech-input-related parameters (1).

Abbr. Name Definition Int.
level

Meas.
meth.

WER,
WA

Word error rate,
word accuracy

Percentage of words which have been (in-)
correctly recognised, based on the ortho-
graphic form of the hypothesized and the
(transcribed) reference utterance, and an
alignment carried out with the help of the
“sclite” algorithm, see (NIST, 2001). Desig-
nating nw the overall number of words from
all user utterances of a dialogue, and sw, dw

and iw the number of substituted, deleted
and inserted words, respectively, then the
word error rate and word accuracy can be
determined as follows:

WER =
sw + iw + dw

nw

WA = 1 − sw + iw + dw

nw
= 1 − WER

See also Simpson and Fraser (1993); de-
tails on how these parameters can be cal-
culated in case of isolated word recognition
are given in van Leeuwen and Steeneken
(1997)

word instr./
exp.

SER,
SA

Sentence error
rate, sentence
accuracy

Percentage of entire sentences which have
been (in-) correctly identified. Denoting ns

the total number of sentences, and ss, is and
ds the number of substituted, inserted and
deleted sentences, respectively, then:

SER =
ss + is + ds

ns

SA = 1 − ss + is + ds

ns
= 1 − SER

(Simpson and Fraser, 1993)

utt. instr./
exp.
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Table 4.A.9. Speech-input-related parameters (2).

Abbr. Name Definition Int.
level

Meas.
meth.

NES Number of
errors per
sentence

Average number of recognition errors in a
sentence. Being sw(k), iw(k) and dw(k)
the number of substituted, inserted and
deleted words in sentence k, and ns the
number of sentences, then

NES(k) = sw(k) + iw(k) + dw(k)

The average NES can be calculated as fol-
lows:

NES =

�ns
k=1 NES(k)

ns
=

WER · nw

ns

(Strik et al., 2001)

utt. instr./
exp.

WES Word error per
sentence

Related to NES, but normalised to the
number of words in sentence k, w(k):

WES(k) =
NES(k)

w(k)

The average WES can be calculated as fol-
lows:

WES =

�ns
k=1 WES(k)

ns

(Strik et al., 2001)

word instr./
exp.

AN :CO,
AN :IC,
AN :PA,
AN :FA,
%AN :CO,
%AN :IC,
%AN :PA,
%AN :FA

Number or
percentage of
user questions
with correct/
incorrect/
partially correct/
failed system
answers

Overall number or percentage of questions
from the user which are

– correctly (AN :CO)

– incorrectly (AN :IC)

– partially correctly (AN :PA)

– not at all (AN :FA)

answered by the system, per dialogue, see
Polifroni et al. (1992), Goodine et al. (1992)
and Hirschman and Pao (1993)

utt. exp.
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Table 4.A.10. Speech-input-related parameters (3).

Abbr. Name Definition Int.
level

Meas.
meth.

DARPAs,
DARPAme

DARPA score,
DARPA
modified error

Measures according to the DARPA speech
understanding initiative, modified by
Skowronek (2002) to account for partially
correct answers:

DARPAs =
AN :CO − AN :IC

# user questions

DARPAme =
AN :FA + 2 · (AN :IC + AN :PA)

# user questions

(Polifroni et al., 1992; Goodine et al., 1992;
Skowronek, 2002)

utt. exp.

PA:CO,
PA:PA,
PA:FA,
%PA:CO,
%PA:PA,
%PA:FA

Number of
correctly/
partially
correctly/
incorrectly
parsed user
utterances

Evaluation of the number of concepts
(attribute-value pairs, AVPs) in an utterance
which have been extracted by the system:

– PA:CO: All concepts of a user
utterance have been correctly ex-
tracted by the system.

– PA:PA: Not all but at least one
concept of a user utterance has been
correctly extracted by the system.

– PA:FA: No concepts of a user
utterance have been correctly ex-
tracted by the system.

Expressed as the overall number or per-
centage of user utterances in a dialogue
which have been parsed correctly/ partially
correctly/incorrectly (Danieli and Gerbino,
1995)

utt. exp.
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Table 4.A.11. Speech-input-related parameters (4).

Abbr. Name Definition Int.
level

Meas.
meth.

CA,
CER

Concept
accuracy,
concept error
rate

Percentage of correctly understood seman-
tic units, per dialogue. Concepts are defined
as attribute-value pairs (AVPs), with nAV P

the total number of AVPs, and sAV P , iAV P

and dAV P the number of substituted, in-
serted and deleted AVPs. The concept ac-
curacy and the concept error rate can then
be determined as follows:

CA = 1 − sAV P + iAV P + dAV P

nAV P

CER =
sAV P + iAV P + dAV P

nAV P

(Gerbino et al., 1993; Simpson and Fraser,
1993; Boros et al., 1996; Billi et al., 1996)

utt. exp.

UA Understanding
accuracy

Percentage of utterances in which all
semantic units (AVPs) have been correctly
extracted:

UA =
PA : CO

# user turns

(Zue et al., 2000)

utt. exp.
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Abstract Miscommunication occurs frequently in any communicative interaction. Despite
a long history of studies of miscommunication across a range of different disci-
plines, the focus in spoken dialogue technology has been almost exclusively on
miscommunication caused by speech recognition errors. This chapter reviews
approaches to miscommunication in several different disciplines and examines
the issues involved in assessing the need to deal with miscommunication that
arises in interactions with spoken dialogue systems and what methods can be
used in different interactional contexts to repair miscommunication.

Keywords: Miscommunication; Error handling; Grounding.

1. Introduction
Miscommunication is a frequent occurrence in any communicative interaction,
whether this communication is at a global level between different nations, eth-
nic or religious groups, or at an individual level, for example, between man-
ager and subordinate worker, doctor and patient, male and female, or older and
younger person. The analysis of the causes of miscommunication can be traced
back to the writings of the classical Greeks and there is an immense literature
dealing with miscommunication in all its various forms and guises. At the same
time there are many views on how miscommunication should be handled in the
different forms and contexts in which it occurs.

This chapter provides an overview of miscommunication in the context of
spoken natural language interaction between humans and computers — an area
known generally as spoken dialogue technology (McTear, 2004). Most work in
this area has focussed on miscommunication caused by inaccurate speech re-
cognition. In a recent study, for example, it was found that the majority of

101
L. Dybkjær and W. Minker (eds.), Recent Trends in Discourse and Dialogue, 101–122.
c© 2008 Springer Science + Business Media B.V.



102 RECENT TRENDS IN DISCOURSE AND DIALOGUE

errors occurred at the speech recognition level (Bohus and Rudnicky, 2007).
Various ways of detecting and handling speech recognition errors will be re-
viewed below. However, it is interesting that a fairly large number of the errors
analysed in this study were caused by other factors such as user’s utterances
that were outside the system’s domain or that were outside the system’s se-
mantic grammar. Indeed, as speech recognition accuracy improves, we can
anticipate that miscommunication at other levels of interaction will become
more prominent and that it will be necessary to consider ways of dealing with
these different types of miscommunication.

This chapter is organised as follows. The next section examines some com-
mon definitions of miscommunication with a view to determining the types of
miscommunication that need to be addressed in spoken dialogue systems. This
is followed by a review of approaches to miscommunication across a number
of disciplines. To date, many of the issues raised in these approaches have not
been addressed in spoken dialogue technology and thus it is important to assess
their relevance. The next section briefly reviews current work on error handling
in spoken dialogue systems, looking at how errors can be detected by monitor-
ing the dialogue for cues that an error has occurred; how potential errors can be
predicted based on evidence from the dialogue so far; and what strategies can
be used to recover from errors. Based on these overviews of approaches from
other disciplines and current work in spoken dialogue systems, two important
questions will be discussed:

1. Why bother with errors — what are the costs and benefits?

2. If we decide to deal with errors, how should we go about it?

It will be seen that some of the decisions relating to these questions will de-
pend crucially on various aspects of the content of the interaction — for exam-
ple, whether the main focus of the interaction is on referential communication
(i.e. to support some transaction), or whether the focus is more on interper-
sonal aspects of the communication. The significance of these distinctions for
the more novel types of dialogue system that are currently being created will
be assessed.

2. Defining Miscommunication
There are many different definitions of miscommunication. The following is a
typical dictionary definition (Dictionary, 2004):

Lack of clear or adequate communication.

However, this definition is not particularly helpful as it fails to identify the
source of the problem and does not specify what is meant by ‘clear’ or ‘ade-
quate’ communication.
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In many approaches miscommunication is viewed from the perspective of
the recipient (or hearer) of the communication. For example, McRoy (1998)
distinguishes between misunderstanding, non-understanding, and misinterpre-
tation. In this definition misunderstanding is where one participant obtains an
interpretation that she believes is complete and correct, but which is, however,
not the one that the other speaker intended her to obtain. A non-understanding
is where a participant either fails to obtain any interpretation at all, or ob-
tains more than one interpretation, with no way to choose among them. Fi-
nally, with a misinterpretation the most likely interpretation of a participant’s
utterance suggests that their beliefs about the world are unexpectedly out of
alignment with those of the other dialogue participant. In terms of spoken di-
alogue systems, non-understandings are generally easier to detect and repair,
misunderstandings may be detected and resolved given appropriate verification
strategies, but misinterpretations may only become apparent at a later point in
the dialogue, if at all.

This notion of misalignment is taken a stage further by Traum and Dillen-
bourg (1996) who define miscommunication as

one particular case of a lack of alignment of agents’ mental state, specifically one
in which they diverge on the occurrence or results of communication..., miscom-
munication can be viewed as instances of action failure (when the speaker fails
to produce the intended effect), misperception (when the hearer cannot recognise
what the speaker intended to communicate), or both.

In this definition the focus is on the communicative dyad and the source
of the miscommunication can be the speaker, the hearer, or both speaker and
hearer. This definition is close to the concept of ‘grounding’, to be discussed
later, in which successful communication is achieved through mutual ground-
ing of information between the dialogue participants, without attempting to
assign blame to any of the participants for the miscommunication.

In graphical user interfaces error handling is viewed in terms of addressing
‘ill-formed input’, where the user has made an illegal or erroneous choice of
input either as a result of a mistake or due to a lack of knowledge of what is
permissible in the current context. If the system detects the error it addresses
it with some form of warning or help. While ill-formed input is also possible
in spoken dialogue systems, for example, a mispronunciation or choice of an
incorrect word, the blame for errors is usually attributed to the system, gener-
ally in terms of inadequate or inaccurate speech recognition. Errors could also
occur at other levels of the linguistic hierarchy, i.e. at the syntactic, semantic,
pragmatic, and discourse levels, however few spoken dialogue systems address
errors at these levels. Table 1 provides some examples of miscommunication
at different levels of the linguistic hierarchy.

Generally error handling deals with errors that involve referential aspects of
communication, i.e. the content of what is being communicated. Increasingly,
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Table 1. Linguistic levels of miscommunication.

Level Example

Speech recognition ‘four candles’ or ‘fork handles’
Lexical ‘plugs’ electrical or bath plugs?
Syntactic ‘drink the beer in the fridge’

the beer which is in the fridge or do drinking in fridge?
Semantic ‘every student has to write an essay’

different or same essay for each student?
Discourse Referential ambiguity: ‘put it there’
Pragmatic: Intentions ‘is that door open’ question or command?

Table 2. Miscommunication across a range of disciplines.

Discipline Examples of areas of miscommunication

Sociolinguistics and Ethnography cross-cultural, intergenerational, cross-gender
Communication Science global and organisational
Social Psychology gender, professional e.g. doctor–patient
Conversation Analysis organisation of repair in conversation
Natural Language Processing referential ambiguity, misconceptions

however, there has been an interest in exploring affective aspects of communi-
cation. Here there is less emphasis on the content and more on the emotional
overtones being conveyed. Indeed, in many cases of miscommunication be-
tween humans it is the affective aspect that gives rise to the miscommunication
rather than the content of the message itself. This more advanced aspect of
spoken language dialogue will be considered in more detail later.

3. Approaches to Miscommunication
in Other Disciplines

Miscommunication has been addressed in a wide range of disciplines, in-
cluding: sociolinguistics, ethnography, communication science, media studies,
social psychology, conversation analysis, and natural language processing.
Moreover, the domain of enquiry has ranged across a wide variety of interac-
tional contexts, including global miscommunication between nations, ethnic
groups and religions; organisational miscommunication within businesses and
in contexts of employment; and various other areas such as cross-cultural,
male–female, intergenerational, and professional miscommunication, such
as doctor–patient and teacher–student. Table 2 lists a range of disciplines
along with the areas of miscommunication that they have mainly been con-
cerned with.
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Most of this literature has been ignored or considered irrelevant to spoken
dialogue research. In this section a selection of different approaches and is-
sues will be briefly reviewed and assessed in terms of their relevance to the
treatment of miscommunication in spoken dialogue systems.

3.1 Global and Organisational
Miscommunication

There is a long tradition of research on global and organisational communi-
cation that can be traced back to the writings of the ancient Greeks, such as
Socrates, and that has addressed the breakdown of communication between
groups. At the broadest level this includes nations, ethnic groups, and religious
groups, and within organisations groups such as management and workforce
as well as individuals within the organisations. In this tradition miscommuni-
cation is viewed as being a result of conflicting experiences, lifestyles, desires,
and values. Much of this work on miscommunication involves studies of ‘ef-
fective communication’, where ‘dialogue’ is recommended as a way to resolve
differences. Note that in this work dialogue is viewed as a tool to enable groups
and individuals to communicate more effectively, simply as a result of engag-
ing in dialogue. In spoken dialogue technology, on the other hand, the process
of dialogue is viewed as being problematic and error prone. For this reason this
tradition of research has little relevance to spoken dialogue research.

3.2 Cross-Cultural and InterGender
Miscommunication

A more relevant research tradition is the micro-analysis of communication
processes between individuals from different cultural and linguistic back-
grounds. In this work the aim is to explore how communication breaks down
as a result of differences in cultural norms for language use, interaction, and
the use of conversational inferences. An example of this type of analysis is
the work of Gumperz (1978). For example, in one study it was shown how
the use of different prosodic conventions can give the impression of rudeness,
even though this might be unintentional, as in the use of stress on the word
‘please’ in the phrase ‘exact change please’ by West Indian bus drivers in
London. Other bus drivers saying exactly the same words without this par-
ticular prosodic feature did not seem to give offence in the same way. Thus
miscommunication in the sense of the communication of the affective aspects
of a message is closely related to subtle differences in what can be conveyed
by a particular linguistic feature across different cultural groups that share the
same language. This finding has particular relevance for the deployment of
call centre agents as well as for the use of automated systems using particular
accents and prosodic patterns.
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There is an extensive literature on language and gender in which differences
in the use of language are used to explain miscommunication between males
and females. Earlier studies focused on differences at more traditional linguis-
tic levels, such as phonology, morphology, syntax and lexis (Coates, 1998),
while more recently the emphasis has shifted to differences in conversational
style (Tannen, 2001). Findings include differences in the use of back channel
cues to acknowledge a preceding utterance, where women tend to use these
cues to indicate attention and men use them to indicate agreement. Miscom-
munication arises where men expect that the use of a minimal back channel
response signals agreement rather than simply attention. Similarly, it has been
reported that women tend to use questions more to help maintain a conversa-
tion while men use questions to request information (Maltz and Borker, 1982).
Findings such as these are potentially relevant for advanced spoken dialogue
systems where there are gender differences between the dialogue participants.

More generally, there has been a long tradition of the study of miscommu-
nication in different social contexts. For example, Coupland et al. (1991) is a
collection of papers that investigates miscommunication in terms of gender,
generational, and cultural differences, in clinical and organisational contexts,
and in person–machine communication. Similarly, Clark (1996) has conducted
numerous detailed studies of how humans communicate with one another,
while Nass and Brave (2004) report a range of studies of how people interact
with spoken dialogue systems, looking at issues such as the gender of the sys-
tem voice, accent, race, ethnicity, and personality. Some of the findings of these
studies are relevant to the handling of miscommunication in spoken dialogue
systems, particularly more advanced systems in which there is more focus on
affective aspects of communication. Some examples will be presented later.

3.3 Conversation Analysis
There is a long tradition of research known as Conversation Analysis
(CA) that involves micro-analysis of transcripts of conversation and that is
potentially relevant to spoken dialogue researchers. CA developed out of
ethnomethodology, which is a branch of sociology that examines how people
interpret and act within a social world. Applied to conversation the methods
of CA involve searching for recurring patterns across many records of natu-
rally occurring conversations with the aim of discovering the systematic prop-
erties of the sequential organisation of talk and how utterances are designed to
manage such sequences. One example of this work is the study of how con-
versational repair is organised (Schegloff et al., 1977). Four types of repair
were distinguished, depending on who initiated the repair and who carried it
out. The speaker whose utterance contains a repairable element is described as
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‘self’ while the recipient of the utterance is referred to as ‘other’. This gives
rise to a four-way distinction:

Self-initiated self-repair (in own turn, turn 1)

Self-initiated self-repair (in turn transition)

Other-initiated self-repair (in turn 2)

Other-initiated other-repair (in turn 2)

Some interesting findings arose from the analysis of conversational repairs
using these distinctions. On the one hand, the opportunities for repair are se-
quentially ordered in that opportunities for self initiation of repair occur before
those for other initiation of repair, as indicated above. Similarly repair by self
occurs before repair by other. These findings led to a more general conclu-
sion that repairs are organised in terms of a system of ‘preference’ in which
self-initiation of repair is preferred to other-initiation, while self-repair is pre-
ferred to other-repair. In this analysis the term ‘preference’ is used to describe
the feature of markedness. In other words, items that are preferred are un-
marked, while those that are dispreferred are marked. With reference to repair
this means that dialogue acts such as corrections of the other person’s utterance
are normally delayed and marked in some way — for example, with indicators
of uncertainty or hesitation. In this way the speaker of the utterance containing
a potential error is given the opportunity to self-correct, and corrections by the
recipient of the utterance are modulated so that they appear less direct.

Generally the CA tradition has been ignored in spoken dialogue research,
except for occasional references to commonly used terms such as turn-
taking and adjacency pairs. One problem is that the CA approach is to avoid
pre-mature formalisation, so that descriptions of phenomena such as turn-
taking, adjacency pairs, and repair are not easily formulated as rules that can
be implemented as algorithms. Indeed, as Button et al. (1995, chapter 7) argue
strongly, the patterns and processes that are described in CA represent norma-
tive principles rather than formal rules. Ultimately the point being made here
is that it is conceptually impossible to develop computers that can talk (and
think) in the ways that humans do.

Notwithstanding these objections, there are aspects of the findings of CA
that are relevant to the engineering of spoken dialogue interfaces, such as en-
abling the system to behave in a way that simulates the processes of human
conversation. So, for example, in relation to miscommunication, it might be
assumed that, if the system detects a potential error, one way to rectify it
would be to immediately correct the error. In this way the system would as-
sume responsibility for the dialogue. However, in terms of conversational style
this would be a dispreferred strategy and a more human-like system might use
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either a more mitigated form of correction or a request for clarification, which
is essentially an invitation to self-correct. Whether this would be a suitable
strategy for all types of spoken dialogue interaction would then be an empiri-
cal issue requiring further investigation.

3.4 Natural Language Interfaces
A considerable amount of research was carried out in the 1980s concerned
with miscommunication involving natural language interfaces. Natural lan-
guage interfaces at that time used natural language text for input and out-
put, and were mainly systems for retrieving information from databases using
natural language or, in some cases, interfaces for communicating with expert
systems. Given that these interfaces did not use speech, the problems associ-
ated with speech recognition did not need to be addressed and attention could
be focused on other problems such as various types of ill-formed input at other
levels of linguistic analysis. In the simplest case ill-formed input might be a
misspelling; however, more complex cases involved issues such as reference
identification failures, false assumptions, misconceptions, and discrepancies
between the beliefs, goals and intentions of the dialogue participants. A col-
lection of a number of papers illustrating this research can be found in Reilly
(1987). The following are some examples.

3.4.1 False assumptions. False assumptions can occur when a di-
alogue participant incorrectly applies a default rule of inference. For example,
in the following dialogue the default inference is that associate professors have
tenure (in universities in the United States), but the recipient of the question
blocks the misapplication of this default rule so that the first speaker does not
make a false assumption (Joshi et al., 1987):

Q: Is Sam an associate professor?
R: Yes, but he doesn’t have tenure.

3.4.2 Misconceptions. Misconceptions occur when a dialogue
participant has a belief that is incorrect. In the following example, the first
speaker believes that destroyers can have a mast height above 190. However,
within the database destroyers have a mast height between 85 and 90. The sys-
tem corrects the misconception and indicates an alternative formulation of the
question (McCoy, 1987):

Q: Give me the HULL-NO of all DESTROYERS whose MAST-HEIGHT is
above 190.
R: There are no DESTROYERS in the database having MAST-HEIGHT above
190. All DESTROYERS have a MAST-HEIGHT between 85 and 90.
Were you thinking of an AIRCRAFT-CARRIER?
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3.4.3 Pragmatic overshoot. A similar type of misconception has
been described by Carberry (1987) as ‘pragmatic overshoot’ which arises when
the speaker’s view of the world may differ from that of the listener, as in the
following example:

Q: What apartments are for sale?

This question is pragmatically inappropriate in a context in which apart-
ments are not sold, only apartment buildings. Correction of this error requires
a context model of the speaker’s underlying task-related plan as inferred from
the preceding dialogue.

Much of this work is potentially relevant to spoken dialogue technology, yet
currently there has been little reference to the issues addressed in this tradition
and the techniques used. In general the motivation for much of the research
in this tradition was the development of co-operative interfaces that could de-
tect errors, misconceptions, and other forms of problematic input that would
potentially lead to miscommunication. The techniques applied were based on
artificial intelligence research on topics such as inference, plan recognition,
and reasoning. One reason why these issues have not been addressed is the
need to focus in current spoken dialogue systems on the more immediate prob-
lem of the detection and handling of speech recognition errors. It might be
expected that, as spoken dialogue systems become more advanced and incor-
porate more human-like capabilities, there will be a need to address issues such
as co-operativity and misconceptions. The work of the TRIPS project at the
University of Rochester, which derives from AI-based work on dialogue and
planning in the 1980s, is a good example of more advanced spoken dialogue
systems that incorporate AI-based components for planning and context rep-
resentation to resolve issues such as referential ambiguity and ill-formed plans
(Allen et al., 2001). However, it is interesting to note that problem solving and
reasoning in the TRIPS system have to be constrained in the interests of real-
time performance. Some issues that would need to be investigated in respect of
AI-based approaches to advanced natural language interfaces are the degree
of computational complexity involved in the reasoning process, the scalability
of the solutions, and their generalisability to other domains.

4. Current Approaches to Miscommunication
in Spoken Dialogue Systems

As mentioned earlier, current spoken dialogue systems deal predominantly
with miscommunication at the level of speech recognition errors. This section
reviews current approaches to the detection and handling of speech recogni-
tion errors in spoken dialogue systems, followed by a brief look at multimodal
dialogue systems that include other modalities as well as speech.
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The following is a typical example of the speech recognition errors that
might occur in a spoken language dialogue between a human user and an auto-
mated system (the system’s interpretation of the user’s input is in brackets and
upper case):

1 S: What city are you leaving from?
2 U: Urbana Champaign [OKAY IN THAT SAME PAY]
3 S: Sorry I’m not sure I understood what you said. What city are you leaving
from?
4 U: Urbana Champaign [FOR MINUTE SINCE HEY]
5 S: I’m still having trouble understanding you. To go on, I need you to answer
the following question. What city are you leaving from?
6 U: Chicago [CHICAGO]
7 S: Traveling from Chicago. Where would you like to go?
8 U: Huntsville [SEOUL]
9 S: Traveling to Seoul. What day did you need to travel?
10 U: No no I’m traveling to Birmingham [THE TRAVELING TO BERLIN
P M]
11 S: Traveling in the afternoon. Okay what day would you be departing
chicago?
12 U: Uh the tenth of august [AT THE TENTH OF AUGUST]
13 S: A flight tomorrow I have a Korean Airlines flight departing Chicago at
1:40PM, arrives Seoul at 5PM the next day. Do you want to take that?
14 U: My destination is Birmingham [FLIGHT DESTINATION MR WEEK-
END]
15 S: Traveling on Saturday, August 12th — I have a flight departing Chicago
at 1:40PM arrives Seoul at
(Source: Dan Bohus)

As can be seen from this example, the system (S) is unable to correctly
recognise the user’s (U) spoken input for the departure and arrival cities and
also makes errors with the time and date.

There are several basic strategies that the system might adopt when faced
with a potential error. On the one hand, it can simply accept the utterance and
continue with the dialogue, as happens in this example at lines 8–9. However,
with this strategy there is the danger of false acceptance, where the system
makes an erroneous interpretation of what the user actually said. Such errors
are difficult to rectify and in this example the system persists with ‘Seoul’ as
the destination city despite the user’s attempt to correct this in line 10.

A second strategy is to reject the utterance and ask the user to repeat or
rephrase. An example occurs in lines 1–5 where the system is unable to derive
a suitable interpretation of the user’s input. In this case the user gives up on the
original source city.

Finally, the system can accept the utterance but attempt to verify it, either
explicitly or implicitly. An explicit verification would take a form such as ‘did
you say Chicago?’ where the user has to answer either ‘yes’ or ‘no’ to ver-
ify the system’s interpretation. In this example the system adopts an ‘implicit
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verification’ strategy, incorporating its interpretation of the user’s input in its
next question (see lines 7, 9, 11). This strategy is less costly in terms of transac-
tion time and user frustration compared with the ‘explicit confirmation’ strat-
egy but has the disadvantage of making error recovery more difficult, as this
example illustrates throughout.

Error handling is an active research topic within spoken dialogue technology
(see, e.g. a recent set of articles in Carlson et al., 2005; see also Bohus and
Rudnicky, 2007; Skantze, 2005). A number of stages can be distinguished:

Error prevention — this occurs at the design stage and is concerned
with the design of appropriate prompts, recognition grammars, dialogue
flows, and verification strategies (Cohen et al., 2004).

Error detection — in this approach the dialogue is monitored for cues
that some error has occurred.

Error prediction — this involves predicting potential problems based on
evidence from the dialogue so far.

Error recovery — this stage is concerned with strategies for putting the
dialogue back on track.

See also Turunen and Hakulinen (2001) for a more fine-grained set of
stages.

4.1 Error Detection
Error detection, which involves looking for cues that an error has occurred, can
be divided into early error detection and late error detection.

With early error detection the system detects that there is something wrong
in the user’s current utterance and takes immediate steps to correct this poten-
tial error. This type of error detection is usually based on acoustic confidence
scores of the user’s input and an error is suspected if the confidence score falls
below a predetermined threshold (Komatani and Kawahara, 2000; Hazen et al.,
2000). However, this measure is not entirely reliable as there is no one-to-one
correspondence between low confidence scores and errors, nor between high
confidence scores and correct recognition (Bouwman et al., 1999). Other ap-
proaches include:

The use of secondary properties of the decoding process, such as lan-
guage models backoff patterns and information in the word-hypothesis
lattice (Wessel et al., 1998; Evermann and Woodland, 2000)

Comparison of prosodic cues in correctly and incorrectly recognised ut-
terances to predict speech recognition performance (Litman et al., 2000)
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The use of combinations of cues such as parsing confidence, degree of
context shift, and salience to reliably predict errors (Walker et al., 2000b)

The use of concept confidence scores derived from speech recognition
confidence scores using a discourse model of what has been said in the
dialogue and what entities have been referred to (Skantze, 2005)

4.2 Late Error Detection
Late error detection has been investigated within the context of the user’s res-
ponse to the system’s attempt to verify the user’s previous utterance. More
specifically, a number of cues have been identified that indicate whether the
user is satisfied with the system’s verification (positive or ‘go on’ cues) or
whether the user rejects the verification (negative or ‘go back’ cues). Examples
of positive cues are short turns, unmarked word order, and confirmations, while
negative cues include longer turns, marked word order, disconfirmations and
corrections. Krahmer et al. (2001) investigated the predictive capacity of these
cues, finding that the best results (almost 97% accuracy) were obtained when
all the cues were used in combination. For detection of errors at later points in
the dialogue, see Skantze (2007).

4.3 Error Prediction
Error prediction is concerned with predicting potential problems in a dialogue
based on features monitored in the dialogue so far. Litman et al. (1999) applied
machine learning techniques to develop a classifier that could predict problem-
atic dialogues, using features such as confidence scores, dialogue efficiency
and quality. The features were collected over the complete dialogue so that it
was not possible for the rules learned by the classifier to influence the course of
the ongoing dialogue. However, in another study Walker et al. (2000a) showed
how information gathered early in the dialogue could be used to modify the
current dialogue strategy, with accuracy rates ranging from 72% to 87% de-
pending on how much of the dialogue had been seen so far.

4.4 Error Recovery
Error recovery can involve a number of different strategies, including asking
the user to repeat or rephrase a problematic utterance or using different verifi-
cation techniques based on the acoustic confidence scores (Sturm et al., 1999).
Krahmer et al. (2001) proposed the use of information available in the detection
of the error, such as the negative cues in late error detection, to enable the sys-
tem to construct a more useful follow-up question. Another approach involves
the system automatically adapting its dialogue strategies on encountering prob-
lems within the dialogue. For example, Litman and Pan (2002) developed a
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system that reverted to a more conservative dialogue initiative strategy if the
dialogue model indicated that misrecognitions had exceeded a given threshold.

Bohus and Rudnicky (2005) examined the performance of ten different error
recovery strategies following non-understanding by the system of the user’s
utterance, finding that the three most successful strategies were:

MoveOn, where the system advances the task by moving on to a different
question

Help, where a help message is provided that explains the current state of
the dialogue and indicates what the user can say

TerseYouCanSay, where the system states briefly what the user can say
at the current point in the dialogue

These findings are interesting as they suggest that it may not always be
necessary to invest considerable effort in error detection and repair, as moving
on to a different plan or task might remedy the problem. Similar findings were
reported in a Wizard-of-Oz study of error handling strategies (Skantze, 2005).

4.5 Errors in Multimodal Dialogue
Multimodal dialogue systems that offer more than one input mode can pro-
vide error handling capabilities in which speech recognition error rates can be
improved by using information from the current context, including input from
other modes. One example of this from the QuickSet system involves a user
interacting with a dynamic map interface and saying ‘zoom out’ while making
a checkmark on the map. The words ‘zoom out’ were ranked fourth on the
speech recogniser’s n-best list, but the information from the checkmark ges-
ture enabled the system to override the other phrases as less appropriate in the
current context and to rank the phrase ‘zoom out’ as first on the combined mul-
timodal n-best list (Oviatt, 1999). Similar findings have been reported in other
studies comparing the recognition rates of a unimodal speech-based interface
with a multimodal interface (Oviatt, 1999; Oviatt, 2000).

Using multimodal information in this way is not without its problems, how-
ever, especially with respect to how the information from the different modes
is to be interpreted and integrated (Oviatt, 2000). In some cases the informa-
tion is closely synchronised temporally, as in speech and lip movements. In
other cases there is a less direct coupling and so each item of information has
to be interpreted semantically to determine whether they are related. Different
methods have been used for modality integration, including the unification of
typed feature structures from the outputs of the different modalities (Johnston
et al., 1997, 2002). Little work has been reported as yet on how to resolve the
issue of conflicting information from different modalities.
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5. Handling Miscommunication: Why Bother
and What to Do

Having reviewed current approaches to miscommunication in spoken dialogue
systems as well as related research in miscommunication in various other dis-
ciplines, it is appropriate to return to the questions raised earlier in terms of
considerations and recommendations for future work:

1. Why bother with errors — what are the costs and benefits?

2. If we decide to deal with errors, how should we go about it?

This section examines some recent research on the issues involved in han-
dling miscommunication and describes some of the approaches adopted. It is
argued that decisions as to whether to deal with errors and how to deal with
them are complex and predominantly context dependent.

5.1 Dealing with Errors: Why Bother?
Decisions regarding the need to handle miscommunication revolve around the
assessment of costs and benefits. Not dealing with potential miscommunica-
tion increases the risk that the system might have misinterpreted the user’s
utterance. In cases where this misinterpretation is not detected by the user —
for example, following an attempt by the system to verify what it believes
the user said — the error may go undetected. Errors that are detected later in
the dialogue are generally more difficult to rectify. Furthermore, it is often the
case that errors can have cumulative effects, with one undetected error lead-
ing to more errors. Hence there are significant risks in not addressing poten-
tial miscommunication. Indeed, as Bohus and Rudnicky (2007) have shown,
non-understanding errors have a negative effect on task success and this effect
increases rapidly as the errors become more frequent.

Against this, however, there are the costs involved in error handling. Meth-
ods such as explicit verification of everything the user says increase transaction
time and can lead to user dissatisfaction. As well as this, many of the methods
for detecting and handling errors, particularly those described in the section on
natural language interfaces, are complex and computationally expensive. For
these reasons, researchers are beginning to examine error handling in terms of
a costs/benefits analysis.

These issues have been explored in the Conversational Architectures Project
in which conversation is modelled as a process of decision making under un-
certainty (Paek and Horvitz, 1999; Paek and Horvitz, 2000). In this work the
system reasons about the sources of miscommunication to determine the level
at which the miscommunication has occurred. For example, the miscommuni-
cation could be at the channel level, as in the listener not attending to the spea-
ker’s utterance, or at the attention level, which involves the semantic content of
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the communication. In order to determine whether to resolve the miscommu-
nication and which actions to take, the system applies a costs/benefits analysis.
For example, the costs of repairing a problem at the channel level (such as lis-
tener inattention) would have low costs compared with the costs involved in
continuing the dialogue without ensuring mutual attention.

5.2 Dealing with Errors: What to Do?
A more radical approach to error handling is to accept that miscommunica-
tion is inevitable so that, rather than attempting to detect errors, which often
involves some of the complex mechanisms described earlier, miscommunica-
tion should be handled in terms of the theory of grounding. In the traditional
view of communication involving a sender, receiver and transmission channel,
miscommunication is viewed as ‘noise’ that can be detected and corrected. An
alternative view, which has been referred to as ‘radical intersubjectivity’, sees
each participant in a dialogue as having a unique perspective (Reddy, 1979;
Sperber and Wilson, 2004; Grice, 1975). Within this view people interpret the
messages of others in terms of their own perspective. Communication is possi-
ble because there is sufficient common ground between people’s perspectives,
but at the same time miscommunication is inevitable because of these differ-
ences in perspective. Given this view of communication, dialogue is seen not
as a transmission of information between a speaker and a listener but as a col-
laborative activity in which the aim is to achieve mutual understanding. This
process is referred to as ‘grounding’ (Clark, 1996; Traum, 1999).

The Conversational Architectures Project was concerned with the develop-
ment of a computational model of grounding in which models of uncertainty
and decision theory were used to identify the most useful actions to take when
resolving miscommunication. A different approach was taken in the Queens
Communicator system, where decisions on what actions to take involved the
use of information within the system’s dialogue model (McTear et al., 2005).
One of the decisions to be taken by the system was the type of confirmation
strategy to be used — for example, explicit or implicit. This decision was based
on factors such as the state of the information to be confirmed and its degree
of confirmedness. Information could be ‘new for the system’, ‘inferred by the
system’, ‘repeated by the user’, ‘modified by the user’, ‘negated by the user’,
and so on, while the degree of confirmedness varied according to whether the
user had just repeated the information, modified it, or negated it (see Skantze,
2005 for a similar approach). Using a set of rules the system took this informa-
tion and determined its strategy in relation to how it would confirm the item of
information. The following is an example:

1 User: I’d like to book a four-star hotel in Belfast from the 15th of December
to the 20th of December.
2 System: OK, that’s a four star hotel in Belfast from 15th December to 20th
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December.
3 User: Could you make that a three-star?
4 System: OK, got it. So that’s a three star. Is that correct?

The information provided in utterance 1 is ‘new for the system’ so the strat-
egy applied is implicit confirmation. However one of the values is ‘modified by
the user’ in utterance 3, thus affecting the degree of confirmedness, resulting
in a more constraining confirmation type (repair confirm) in utterance 4.

Some interesting research in social psychology has examined the issue of
how to address miscommunication (Nass and Brave, 2004). In this work three
different strategies are identified:

System takes responsibility

Blame user

Find a scapegoat

The strategy of ‘system takes responsibility’ is often used in spoken dia-
logue systems — for example, where the system is unable to interpret the user’s
input (‘Sorry, I don’t understand’). Findings from studies reported by Nass and
Brave (2004) suggest that systems using this strategy were perceived as modest
and likeable, but unfortunately also as unintelligent and incompetent.

The strategy of ‘blame user’ is also used in some dialogue systems where
it is obvious where the problem lies (for example, ‘You must speak more
clearly’). This strategy was perceived as unpleasant but also as competent and
reliable, presumably because the system seemed to be in control of the inter-
action and was able to detect sources of difficulty.

Finally, the strategy ‘find a scapegoat’ (‘There seems to be a problem with
the telephone line’), where the blame is deflected away from both the system
and the user, resulted in the system being perceived as more likeable.

In their discussions regarding the relative advantages and disadvantages of
the use of these strategies in human–machine dialogue Nass and Brave (2004)
indicate that one of the major risks of engaging in communication repair is that
it can foreground communicative inadequacy. On this basis they recommend
the following strategies:

Take responsibility when unavoidable

Ignore errors whenever possible

Shift the blame

Studies such as these are particularly relevant for spoken dialogue research
as user perceptions are a major factor in the acceptability of a system by users,
influencing whether users will be willing to engage with the system or not.
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5.3 Context of Interaction
The type of interaction and its context have a bearing on decisions regarding
the estimation of the costs and benefits of handling miscommunication. Most
current spoken dialogue systems support transactional communication such as
the retrieval of information or the provision of services. The accuracy of the in-
formation that is conveyed in these transactions is critical for the success of the
transaction — such as a user’s PIN, cash transfers, flight details, or hotel reser-
vations — and thus it is essential that the information is confirmed (grounded)
for the transaction to be concluded successfully. The costs of confirming infor-
mation would thus outweigh the costs of increased transaction times. The same
would apply to an even greater extent for safety critical interactions involving
information that is high-risk, as in flight control, military operations, and med-
ical applications. In these cases the grounding of the referential content of the
information is essential.

Different criteria apply in the case of systems where the focus is on inter-
personal communication, as in conversational companions for the elderly or
talking toys for children. Here referential accuracy is less important compared
with affective aspects of communication, such as the use of feedback to in-
dicate agreement or solidarity, or the ability to convey and detect emotions.
Embodied conversational agents and other applications, such as car navigation
systems, that convey a persona are examples where, in addition to the accu-
racy of the referential content, interpersonal aspects of the communication are
an important contributor to the acceptability of the system by users. For ex-
ample: while a female voice is perceived as conveying a more sensitive and
emotionally responsive personality and would be better suited in an application
involving complaint handling, a male voice is more suited to contexts requir-
ing the expression of authority — such as stating a policy of ‘no refunds’ —
since females are generally evaluated negatively when they assume a position
of dominance (Nass and Brave, 2004). Indeed, in a commercial context, BMW
in Germany had to recall its car navigation system that had a female voice as
most BMW drivers, who are male, did not like taking directions from females
(Nass and Brave, 2004).

Finally there are systems where miscommunication could be incorporated
as an integral part of the human–computer dialogue, as in games where the
system tries to intentionally mislead the player or engage in a battle of wits in
which the challenge for the player is to try to communicate with a less than
compliant partner. A similar approach could be used to enliven instructional
materials for language learning and other types of edutainment.
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6. Conclusions
Miscommunication within the discipline of spoken dialogue technology has
been viewed essentially in terms of error handling with particular application
to the detection and repair of speech recognition errors. A number of sophisti-
cated techniques from artificial intelligence have been applied to error handling
in spoken dialogue with computers, either in terms of detecting and correcting
the errors or in terms of grounding, where communication is seen as a collab-
orative activity.

Miscommunication occurs in a variety of contexts and has been investigated
extensively by a wide range of disciplines. Discussions of miscommunication
can be traced back to the earliest writings in civilisation. As spoken dialogue
systems develop and extend their range of application beyond task-based trans-
actions to interpersonal interactions, other aspects of miscommunication, such
as the misinterpretation of emotion and intent, will need to be taken into ac-
count and it is here that the contributions of various disciplines, such as social
psychology, conversation analysis, and sociolinguistics will become more rel-
evant.
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SORRY, I DIDN’T CATCH THAT!

An Investigation of Non-Understanding Errors
and Recovery Strategies
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Abstract We present results from an extensive empirical analysis of non-understanding
errors and ten non-understanding recovery strategies, based on a corpus of di-
alogues collected with a spoken dialogue system that handles conference room
reservations. More specifically, the issues we investigate are: what are the main
sources of non-understandings? What is the impact of these errors on global
performance? How do various strategies for recovery from non-understandings
compare to each other? What are the relationships between these strategies and
subsequent user response types, and which response types are more likely to
lead to successful recovery? Can dialogue performance be improved by using a
smarter policy for engaging the non-understanding recovery strategies? If so, can
we learn such a policy from data? Whenever available, we compare and contrast
our results with other studies in the literature. Finally, we summarise the lessons
learned and present our plans for future work inspired by this analysis.

Keywords: Spoken dialogue systems; Error handling; Error sources; Non-understandings;
Error recovery strategies; Error recovery policies.

1. Introduction
One of the most important challenges facing spoken language interfaces today
is their brittleness when faced with understanding errors. The problem is
present across all domains and interaction types, and arises primarily from the
inherent unreliability of the speech recognition process. The recognition dif-
ficulties are further exacerbated by the conditions under which these systems
typically operate: spontaneous speech, large vocabularies and user populations,
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and large variability in input line quality. In these settings, average word error
rates of 20–30% (and up to 50% for non-native speakers) are quite common.
Unless mediated by better error awareness and robust recovery mechanisms,
these errors exert a strong negative influence on the overall performance of
spoken dialogue systems (Sanders et al., 2002; Walker et al., 1998), and
severely limit the naturalness of the interaction and the complexity of the tasks
that can be addressed.

Left unchecked, speech recognition errors can lead to two types of un-
derstanding errors in a spoken dialogue system: misunderstandings and
non-understandings. In a misunderstanding, the system obtains an incor-
rect interpretation of the user’s turn. In contrast, in a non-understanding, the
system fails to obtain any interpretation of the input.

In this paper, we focus our attention on non-understandings. If for misun-
derstandings detection is a key problem (San-Segundo et al., 2000; Litman
et al., 2000; Carpenter et al., 2001), and the set of recovery strategies is limited
and fairly well understood, e.g. explicit and implicit confirmation (Krahmer
et al., 1999), for non-understandings the situation is almost the opposite. By
definition, systems know when a non-understanding has happened. However,
a mechanism for diagnosing the source of the non-understanding is largely
missing. Moreover, the number of potential recovery strategies is significantly
larger (see Table 1) and the relative trade-offs between them are less well un-
derstood. This further increases the difficulty of selecting the right recovery
strategy at runtime. Most systems use a small number of non-understanding
recovery strategies in conjunction with uninformed, simple heuristic rules for
engaging them. For instance, a system might apologise and repeat its ques-
tion on the first non-understanding, provide more help on the second non-
understanding, and transfer the user to a human operator if a third consecutive
non-understanding occurred.

As a first step towards better error handling for non-understandings, we have
conducted an empirical study of these errors and of ten recovery strategies.
More specifically, the questions under investigation were:

What are the main sources of non-understandings (and what are their
relative frequencies)?

How large is the impact of non-understandings on global dialogue per-
formance?

How do various strategies for recovering from non-understandings com-
pare to each other?

What are the relationships between each strategy and subsequent user
behaviours, and which behaviours are more likely to lead to successful
recovery?
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Table 1. Ten strategies for recovering from non-understandings.

S: Would you like a small room or a large one?
U: [Non-understanding]

1 AskRepeat(AREP) [system asks the user to repeat the utterance]

S:Can you please repeat that?

2 AskRephrase(ARPH) [system asks the user to rephrase the utterance]

S: Can you please try to rephrase that?

3 Reprompt(RP) [system repeats the previous prompt]

S:Would you like a small room or a large one?

4 DetailedReprompt(DRP) [system repeats a more verbose version of the previous prompt]

S:I’m sorry, I don’t think I understood you correctly. Right now I’m trying
to find out if you would prefer a small room or a large one?

5 Notify(NTFY) [system notifies the user that a non-understanding has occured]

S:Sorry, I’m not sure I understood what you said ...

6 Yield(YLD) [system remains silent, and thus implicitly notifies the user that a non-

understanding has occurred]

S:...

7 MoveOn(MOVE) [system advances the task by moving on to a different question]

S:Sorry, I didn’t catch that. One choice would be Wean Hall 7220. This
room can accommodate 20 people and has a whiteboard and a projector.
Would you like a reservation for this room?

8 YouCanSay(YCS) [system tells the user what he or she can say at this point in the dialogue]

S:Sorry, I didn’t catch that. Right now I’m trying to find out if you would prefer a
small room or a large one. You can say “I want a small room” or “I want a large
room”. If the size of the room doesn’t matter to you, just say “I don’t care”.

9 TerseYouCanSay(TYCS) [a terser version of the YouCanSay strategy]

S:Sorry, I didn’t catch that. You can say “I want a small room” or “I want a large
room”. If the size of the room doesn’t matter to you, just say “I don’t care”.

10 FullHelp(HELP) [system provides a longer help message that includes an explanation of the

current state of the dialogue, as well as what the user can say at this point in the dialogue]

S:I’m sorry, I don’t think I understood you correctly. So far I have found
5 conference rooms available matching your constraints. Right now I’m
trying to find out if you would prefer a small room or a large one. You
can say “I want a small room” or “I want a large room”. If the size of the
room doesn’t matter to you, just say “I don’t care”.

Can global dialogue performance be improved by using a smarter policy
for engaging the non-understanding recovery strategies?

If yes, can we learn a better policy from data?



126 RECENT TRENDS IN DISCOURSE AND DIALOGUE

We begin by describing the data collection experiment which provided the
corpus of dialogues used in this investigation. Then, in Sections 2 through 8,
we address in turn each of the questions raised above. Whenever possible, we
compare our findings to other results previously reported in the literature, in an
effort to shed more light on the generalisability of these results across different
domains. Finally, in Section 9 we summarise the lessons we learned from this
investigation and the ideas it inspired for future work.

2. Experiment and Corpus

2.1 Data Collection Experiment
2.1.1 System. The data was collected through a user study in which
46 participants, mostly undergraduate and staff personnel on campus interacted
with RoomLine (RoomLine, 2003), a spoken dialogue system for making con-
ference room reservations. RoomLine is a phone-based mixed-initiative system
which has access to live information about the schedules and characteristics
(e.g. size, location, A/V equipment) of 13 conference rooms in two buildings
on campus. To make a room reservation, the system finds the list of available
rooms that satisfy an initial set of user-specified constraints, and engages in
a follow-up negotiation dialogue to present this information to the user and
identify which room best matches their needs. Sample conversations with the
system are available online (RoomLine, 2003).

The system uses two parallel SPHINX-II recognition engines, configured
with telephone-based acoustic models and a trigram statistical language model
(the dictionary size is 1049). The resulting top hypothesis from each engine is
parsed using the Phoenix robust parser (Ward and Isaar, 1994). Subsequently,
semantic confidence scores are computed for each hypothesis. The winning
hypothesis is forwarded to the RavenClaw-based dialogue manager (Bohus
and Rudnicky, 2003). For output, the system uses a template-based language
generation module and the Theta synthesiser (Theta, 2004).

The system was equipped with ten different strategies for recovering from
non-understandings, described and illustrated in Table 1. By strategy we de-
note a simple, single-turn action that the system can take to attempt recovery.
A number of these strategies, such as asking the user to repeat or rephrase,
reissuing the system prompt or providing various levels of help are often en-
countered in spoken dialogue systems. Two strategies that we would like to
draw the reader’s attention upon are Yield and MoveOn. In the Yield strategy,
the system remains silent, as if it did not hear the user’s response, and hence
implicitly signals a communication problem. In the MoveOn strategy, the sys-
tem ignores the problem altogether and tries to advance the task by moving on
to a different question. Note that this is possible only at certain points in the
dialogue, where an alternative dialogue plan for achieving the same goals is
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available. For instance, in the case illustrated in Table 1, the MoveOn strategy
gives up on trying to find whether the user wants a small or a large room, and
starts suggesting rooms one by one. In other cases, the system would try to
advance the dialogue by using a more directed question, for instance asking
“For which day do you need the room?” instead of “How can I help you?”

2.1.2 Experimental design. The user study was designed as a
between-groups experiment, with two conditions: control and wizard.

Participants in the control condition interacted with a version of the Room-
Line system which used an uninformed (random) policy to engage the non-
understanding recovery strategies: each time a non-understanding happened,
the system randomly chose one of the ten available strategies.

Participants in the wizard condition interacted with a modified Wizard-of-
Oz version of the same system. In this version, each time a non-understanding
happened a human wizard decided which one of the ten recovery strategies
should be used. In all other aspects, this system was identical with the sys-
tem used in the control condition. The wizard had live access to the user’s
speech. Several other system state variables were presented to the wizard via
a graphical user interface (e.g. recognition result, confidence score, semantic
parse). When a non-understanding occurred, the wizard selected which strat-
egy should be used through the GUI, and the decision was communicated back
to the system. The wizard had to make this decision during a relatively short
time interval (1–2 seconds) in order to maintain the illusion that the users were
interacting with an autonomous system. A single wizard, the first author of this
paper, was employed throughout the whole experiment. The wizard had very
good knowledge of the system’s functionality and of the domain.

The experimental design described above satisfies two needs. On one hand,
we wanted to be able to comparatively evaluate the ten recovery strategies,
when engaged in an uninformed fashion. This analysis can be performed based
on data collected in the control condition, where the system randomly chooses
which strategy to use. The results are discussed in detail in Sections 5 and
6. At the same time, we wanted to verify whether or not a better policy for
engaging the ten strategies (implemented in this case by the human wizard) can
significantly improve performance. The results of this comparative analysis are
presented in Section 7.

At this point we would like to briefly comment on the decision to give the
wizard full access to the live user speech. This puts the wizard in an apparently
privileged position when compared to a system that would have to make the
same recovery decisions (e.g. the system does not accurately know what the
user says, especially during non-understandings). However, recall that our goal
is only to show that a better recovery policy exists, and not to prove that this
particular policy can be learned or implemented by the system. Without access
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to the user’s speech, the decision making task might have been too difficult
for the wizard, especially given the response-time constraints. In this case, a
negative result, i.e. the lack of detectable differences in the performance of
the two policies, would not be very informative. On the other hand, a negative
result obtained when the wizard had full access to the user’s speech would cast
more serious doubts with respect to the existence of a better non-understanding
recovery policy.

2.1.3 Participants. Forty-six subjects, mostly undergraduate stu-
dents and staff personnel on campus, participated in the data collection ex-
periment. The participants had only marginal prior experience with spoken
language interfaces (some of them had previously interacted with phone-based
customer-service interactive systems). We randomly assigned the participants
into two groups corresponding to the control and wizard conditions. At the same
time, a balance was maintained between groups in terms of the participants’
gender and whether or not their first language was North-American English.

2.1.4 Tasks and experimental procedure. Each participant
attempted a maximum of 10 scenario-based interactions with the system,
within a set time period of 40 minutes. The same 10 scenarios were presented
in the same order to all participants. The scenarios were designed to cover all
the important aspects of the system’s functionality and had different degrees
of difficulty. To avoid language entrainment, the scenarios were presented
graphically. Descriptions of the 10 scenarios as well as a concrete example
of the graphical representation are available online (Bohus, 2005). In order to
motivate the users, we compensated them according to the number of scenarios
they completed successfully.

At the end of the experiment, the participants filled in a SASSI question-
naire (Hone and Graham, 2000) containing 35 questions grouped in 6 factors:
response accuracy, likeability, cognitive demand, annoyance, habitability, and
speed. Additionally, participants were asked to describe what they liked most,
what they liked least and what would be the first thing they would change in
the system.

2.2 Corpus Statistics and Annotations
The corpus of dialogues collected in this experiment (including both the con-
trol and wizard conditions) contains 449 sessions and 8,278 user turns. Table 2
shows a number of additional descriptive statistics. Since pronounced differ-
ences exist on a large number of metrics between native and non-native users,
we also present the breakdown of the figures in these two populations.

The user speech data was orthographically transcribed by a human anno-
tator, and subsequently checked by a second annotator. The transcriptions
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Table 2. Overall corpus statistics.

Total Native Non-native

# Subjects 46 34 12
# Sessions 449 338 111
# Turns 8278 5783 2495

Word error rate 25.6% 19.6% 39.5%
Concept error rate 35.7% 26.3% 57.6%
% Non-understandings 17.0% 13.4% 25.2%
% Misunderstandings 13.5% 9.8% 22.5%

Task success rate 75.1% 85.2% 44.1%

include annotations for various human and non-human noises in the audio
signal. Based on these transcriptions, a number of additional annotations were
created. At the turn level, we manually labelled:

Concept transfer and misunderstandings: each user turn was annotated
with the number of concepts that were correctly and incorrectly trans-
ferred from the user to the system; each turn with at least one incorrectly
transferred concept was automatically labelled as a misunderstanding.

Transcript grammaticality: each user turn was manually annotated as
either in-grammar, out-of-grammar, out-of-application-scope or out-of-
domain (for a discussion, see Section 3).

User responses to non-understandings: the user response types follow-
ing non-understandings were labelled using a tagging scheme first intro-
duced by Shin et al. (2002).

Corrections: turns in which the user was attempting to correct a system
understanding error were flagged as corrections, as in (Swerts et al., 2000).

At the session level, we labelled task completion.

3. Sources of Understanding Errors
We now turn our attention to the first question: what are the main sources of
non-understandings, and what are their relative frequencies?

While the main focus of this chapter is on non-understandings, the analysis
we present in this section covers sources of understanding errors in general,
i.e. both misunderstandings and non-understandings. To avoid potential biases
introduced by the wizard’s recovery policy, the analysis was conducted using
only data from the control condition, where the recovery strategies were en-
gaged in an uninformed fashion.



130 RECENT TRENDS IN DISCOURSE AND DIALOGUE

Intention

Channel

Signal

Acoustic
Repr.

Channel

Lexical
Repr.

Semantic
Repr.

Goal

User

Interpretation

Parsing

Recognition

End-pointer

System

Conversation

Figure 1. Grounding in communication.

We used Clark’s grounding model for human–human communication
(Clark, 1996) as the starting point for our error source analysis. The model
is illustrated in Figure 1. In this model, participants in a conversation coordi-
nate on four different levels to achieve mutual understanding: channel, signal,
intention and conversation. While Clark’s original model addressed issues in
human–human communication, the same layered coordination scheme has
been adopted to model grounding in human–machine interaction (Paek and
Horvitz, 2000; Paek, 2003). In this context, we can also map the flow of in-
formation from the user to the system on the four grounding levels. At the
conversation level, the user has a high-level goal, which subsequently acquires
a corresponding semantic, lexical and eventually an acoustic representation
in the lower levels. The acoustic signal then passes through a noisy channel,
and arrives at the system side. Here, a series of chained components (speech
recognition, language understanding, and discourse interpretation) are used
to progressively reconstruct the user’s higher level goal from the incoming
acoustic signal.

Understanding errors typically occur due to mismatches at different lev-
els between the expressed form of the user’s intent and the system’s mod-
elling abilities (the system’s modelling abilities are represented as grey ovals
in Figure 1). For example, at the highest level, the user might not be aware of
certain system limitations and might try to formulate a goal which the system
cannot handle. In this case it will be impossible for the system to correctly re-
construct the user’s goal, and we will have an understanding error. Similarly,
at the signal level, mismatches between a user’s pronunciation style and the
system’s acoustic models can lead to speech recognition errors, and ultimately
to understanding errors. This view of understanding errors highlights two com-
plementary approaches that can be used to mitigate the mismatches. One is to
create models which can provide better coverage, while still maintaining good
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performance (enlarge the grey ovals in Figure 1). The other is to steer the user’s
responses into the space covered by the system’s models.

Based on the level at which the mismatch occurs, we identify the following
sources of errors:

Out-of-application [conversation level]: The user’s utterance falls out-
side the application’s functionality. These errors can be further divided
into out-of-domain utterances (e.g. the user asks the room-reservation
system about the weather), and out-of-application-scope utterances, i.e.
utterances which express in-domain goals which the system is however
not able to handle (e.g. the user asks if a conference room has windows).

Out-of-grammar [intention level]: The user’s utterance is within the do-
main and scope of the application, but outside of the system’s semantic
grammar (e.g. the user says “erase reservation”, which is not in the sys-
tem’s grammar; the system could have handled the request had the user
said “cancel reservation” or “delete reservation”, which are in the sys-
tem’s grammar).

ASR error [signal level]: The user’s utterance is within the application’s
domain, scope and grammar, but is not recognised correctly due to
acoustic or statistical language modelling mismatches (e.g. the user says
“Thursday morning” but this is misrecognised as “Friday morning”).

End-pointer error [channel level]: The end-pointer is not able to cor-
rectly segment the incoming audio signal (e.g. it truncates the utterance
or sends an empty utterance into the input line).

Figure 2 illustrates the breakdown of non-understandings and misunder-
standings by error source. The majority of errors originate at the signal
(i.e. speech recognition) level. At the same time, a large number of non-
understandings, and a smaller but still significant number of misunderstandings
are caused by out-of-application and out-of-grammar utterances.

0 20% 40% 60% 80% 100%

Non-understandings

Misunderstandings

Out-of-application
Out-of-grammar
ASR Error
Endpointer error

Figure 2. Breakdown of non-understandings and misunderstandings by error source.
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The out-of-application errors encountered in our data consist almost en-
tirely of out-of-application-scope utterances. These utterances are in-domain,
but they refer to inexistent application functionality (the lack of out-of-domain
utterances is most likely due to the scenario-driven nature of the interac-
tions). A closer inspection of these errors revealed that they subsume about
an equal number of requests for inexistent task-level functionality (e.g. “I
need a room for Monday or Tuesday” — the system does not handle “or”
requests), and requests for inexistent meta functionality, such as “go back!”
or various types of corrections (e.g. “You got the wrong day!”, “Change the
date!”, “The time is wrong”).

Together with the out-of-grammar utterances, the out-of-application utter-
ances reflect one facet of an existing mismatch between user and system at the
intention and conversation levels. A second interesting facet, revealed through
an analysis of the transcripts, is that there are certain aspects of system func-
tionality which are never (or very rarely) addressed by the users. For instance,
although the users were told during the briefing that they can say “Help” to the
system at any time, this function was invoked in only 7 of 226 sessions. Other
types of help commands like “where are we?”, “what can you do?”, “what can
I say?”, “interaction tips”, although available at all times were not discovered
by the users and therefore were never used. We found similar examples with
respect to task-level functionality, for commands like “tell me all the rooms”,
“I want a smaller / larger room”, “I don’t care” (about room size), “how big is
this room”, “tell me about this room”, etc. This reflects the fact that, apart from
out-of-grammar errors, users are also not aware of the full functionality of the
application.

The fairly large number of out-of-application and out-of-grammar utter-
ances suggests that the number of non-understandings can potentially be re-
duced by better informing the users about the application capabilities and
boundaries and by steering them into this space. How exactly this shaping can
be performed remains an open research issue (Tomko, 2004). We will return to
this issue in our discussion from Section 9.

The majority of non-understandings — 62% (and even more so for misun-
derstandings — 77%) originate at the speech recognition level. Here, a large
number of contributing factors can be identified, but more precise blame as-
signment is harder to perform. For instance, non-native accents have a signif-
icant impact on ASR performance: average WER is 20.7% for natives, versus
42.3% for non-natives. Ambient noises also have a pronounced effect on re-
cognition performance: average WER for noisy utterances is 32.8% > 25.1%
for noise-free utterances. Other factors, such as speaking rate, user frustration,
and hyper-articulation, have been shown to correlate with recognition accuracy
(Choularton, 2005).
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Figure 3. Misunderstandings and non-understandings before and after rejections.

Rejections. The discussion so far has focused on genuine non-under-
standings, i.e. situations in which the system was not able to extract any mean-
ingful information from the user’s turn. However, our dialogue manager also
uses a rejection mechanism to guard against potential misunderstandings: if
the system has obtained an interpretation of the user’s input, but the confi-
dence score is below a preset threshold, then the utterance will be rejected
by the dialogue manager. These rejected utterances will also appear as non-
understandings at the dialogue management level. Figure 3 illustrates the ratios
of non-understandings and misunderstandings, as computed before and after
the rejection mechanism. After rejections, the total ratio of non-understandings
grows by 7.1% absolute from 10.1% to 17.2%. About 40% of the rejections
(2.9% of the total number of turns, and 17% of the total number of non-
understandings) are false-rejections, i.e. utterances correctly understood but
falsely rejected because of a low confidence score. The relatively high false re-
jection rate contributes significantly to the total number of non-understandings,
on par with other sources of errors. The false-rejection rate can be lowered
by building better confidence annotators, or by tuning the rejection thresh-
old to the domain. In Bohus and Rudnicky (2005), we describe a data-driven
method for optimising the rejection process in light of domain and dialogue-
state-specific trade-offs.

4. Impact of Non-Understandings on Dialogue
Performance

We now turn our attention to the second question: what is the impact of non-
understandings on global dialogue performance? Again, we only used the
data from the control condition in our analysis.

To address this question, we constructed a logistic regression model (Myers
et al., 2001) which relates the frequency of non-understandings in a dialogue
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to the probability of task success. The same approach can be used for studying
the impact on other global performance metrics.

P (TS = 1) =
1

1 + e−(α+β·FNON)
(6.1)

The independent variable is the frequency of non-understandings in a ses-
sion (FNON ), and the dependent variable is the binary task success indicator
(TS). Each data-point corresponds to an entire dialogue session.

We fitted a model using 205 dialogue sessions. Sessions with less than
three turns and sessions with differences between perceived and objective task
completion were eliminated. The fitted model increased the average data log-
likelihood from the majority baseline of −0.5200 to −0.4306 (p < 10−4) in a
likelihood-ratio test, indicating that there is indeed an effect of the frequency
of non-understandings on task success. Figure 4 illustrates the expected proba-
bility of task success, as predicted by the model. The plot shows that when the
frequency of non-understandings is between 0% and 10%, the impact on task
success is relatively minor. However, as the frequency of non-understandings
exceeds 10%, the expected probability of task success starts to drop faster: an
increase of the frequency of non-understandings from 10% to 30% reduces the
expected chance of success from 90% to 52%.

Apart from non-understandings, misunderstandings represent a second im-
portant contributor to breakdowns in interaction. To assess the relative costs of
these two types of errors with respect to task success, we extended the model
described above to include the frequency of misunderstandings as a second
independent variable (FMIS). As expected, the new model predicts task suc-
cess even better: the average log-likelihood of the data was further increased to
−0.2795 (p < 10−4). The estimated regression coefficients, together with their
associated standard errors and p-values are illustrated in Table 3. The resulting
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Figure 4. Expected probability of task success (and confidence bounds) at different frequen-
cies of non-understandings.
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Table 3. Regression coefficients for a task success model using the frequency of non-
understandings and misunderstandings as the independent variables.

Coefficients S.E. p-value

Constant 5.28 0.70 <0.0001
FNON −7.41 2.09 0.0004
FMIS −16.62 2.74 <0.0001
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Figure 5. Expected probability of task success (and confidence bounds) at different non-
understanding recovery rates.

average cost for misunderstandings (−16.62) is 2.24 times higher than the
average cost for non-understandings (−7.41). The result confirms that the rule-
of-thumb that “misunderstandings cost twice as much as non-understandings”
holds in our domain. While the relative costs of these errors can vary across
different domains, and even across different dialogue states within the same
system, the proposed regression approach can be used to establish these costs
in a principled manner (see also Bohus and Rudnicky, 2005).

Finally, we analysed the impact of recovery rate on task success. We
say that a strategy has successfully recovered from a non-understanding if
the following user turn is correctly understood by the system (i.e. it is not
a non-understanding and it is not a misunderstanding). The average non-
understanding recovery rate is then defined as the ratio of successful recover-
ies, with respect to the total number of attempts to recover. Again, a significant
effect on task success was detected (p < 10−4). The dependence is illustrated
in Figure 5. As this figure shows, the impact of the recovery rate on perfor-
mance is greatest when the recovery rate is below 60–70%, and becomes less
significant as we pass that limit.

While it is to be expected that non-understandings and the associated
recovery rate have an effect on global performance, the analyses that we have
performed quantify this effect and provide useful information for focusing



136 RECENT TRENDS IN DISCOURSE AND DIALOGUE

future efforts. In our domain, we expect that further improvements in the non-
understanding recovery rate are likely to translate into significant increases in
task success, especially for the non-native user population, where 26.3% of the
turns are non-understandings and the recovery rate is only 39.3%. In Section 7,
we will see that our experiments with different non-understanding recovery
policies indeed confirm this conjecture.

5. Performance of Non-Understanding Recovery
Strategies

We now turn our attention to the third question: how do the ten strategies
compare with each other in terms of recovery performance?

We computed the non-understanding recovery rate (as defined in the pre-
vious section) for each of the ten recovery strategies. The analysis is again
performed only using the data collected in the control condition of our experi-
ment. In this condition, the recovery strategies were engaged in an uninformed
(random) fashion, and therefore they were on an equal footing. Figure 6 il-
lustrates the resulting performance of each strategy, and the 95% confidence
intervals for these estimates.

An overall analysis of variance for binary response variables (logistic
ANOVA) revealed that there are statistically significant differences between
the mean recovery rates of the 10 strategies (p = 0.000035). Next, we used
logistic ANOVAs to perform pairwise strategy comparisons, in an effort to es-
tablish which are the best performers. Since performance in general (and hence
recovery performance also) varies considerably between native and non-native
speakers, we added a binary factor in the ANOVA model to capture whether
the user was a native speaker or not. Adding this factor to the ANOVA models
considerably improved our power to detect statistically significant differences.
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Table 4. Comparison of non-understanding recovery rates; the cells show the ratio of the
non-understanding recovery rate between the strategy in the corresponding row and column;
the shading indicates the false-discovery-rate level (from lightest to darkest FDR = 0.15,
FDR = 0.10, FDR = 0.05).
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1.03 1.19 1.20 1.22 1.55 1.64 1.73 1.87
TerseYouCanSay TYCS 56.5% 1.15 1.16 1.18 1.50 1.58 1.68 1.81
Reprompt RP 49.2% 1.01 1.03 1.31 1.38 1.46 1.58
YouCanSay YCS 48.6% 1.02. 1.29 1.36 1.44 1.55
AskRephrase ARPH 48.6% 1.27 1.34 1.42 1.53
DetailedReprompt DRP 37.7% 1.06 1.12 1.21
Notify NTFY 35.7% 1.06 1.14
AskRepeat AREP 33.7% 1.08
Yield YLD 31.2%

–
– –

The results of the pairwise strategy comparisons are illustrated in Table 4.
The first column contains the individual recovery rates for each strategy. The
other cells contain the ratio of the recovery rates between the strategies in the
corresponding row and column. For instance, the last cell in the first row indi-
cates that the MoveOn strategy was 2.06 times more successful than the Yield
strategy (e.g. 64.4% versus 31.2%).

Since we performed 45 comparisons (each strategy was compared with each
other strategy), we had to account for multiple comparisons when analysing the
statistical significance of these results. To accomplish this, we used the false-
discovery-rate method (Benjamini and Hochberg, 1995). The method allows
us to compute the expected rate of false significant differences among the de-
tected significant differences. The false-discovery-rate (FDR) for each result
is illustrated by the shade of grey. For instance, we expect that 5% of the 10
cells with FDR = 0.05 are actually not significant differences. While signif-
icant differences could not be established for every strategy pair, the detected
differences allow us to identify a partial ordering.

The MoveOn, Help and TerseYouCanSay strategies occupy the top three po-
sitions, with no statistically significant differences detectable between them.
In retrospect, this result is not surprising. A number of studies (Swerts et al.,
2000; Rotaru and Litman, 2005) have shown that once an error has occurred,
the likelihood of having an error in the next turn is significantly increased (our
data also confirms this result). As we go deeper into a spiral of errors, patience
runs out, frustration is likely to increase, and the acoustic and language mis-
matches are likely to become more pronounced. Moreover, the fact that there
was a non-understanding in the first place indicates that the system is in a diffi-
cult position in terms of decoding the current user intention. When the system
abandons the current question and attempts to solve the problem by using a
different dialogue plan, these effects are likely to be attenuated, and chances



138 RECENT TRENDS IN DISCOURSE AND DIALOGUE

of correct understanding become higher. Similarly, when the system provides
help including sample responses for the current question, the users might find
better ways (from a system’s perspective) to express their goals, or they might
find out about other available options for continuing the dialogue from this
point.

The high performance of the MoveOn strategy is consistent with prior evi-
dence from a Wizard-of-Oz study of error handling strategies (Skantze, 2003).
Skantze’s study has revealed that, unlike most spoken dialogue systems, hu-
man wizards often did not signal the non-understandings to the user when they
occurred. Instead, they asked different task-related questions to advance the
dialogue. This strategy generally led to a speedier recovery. In the RoomLine
system, the MoveOn strategy implements this idea in practice, and the observed
performance confirms the prior evidence from Skantze’s study. Although not
surprising, we do find this result very interesting, as it points towards a road less
travelled in spoken dialogue system design: when non-understandings happen,
instead of trying to repair the current problem, use an alternative dialogue plan
to advance the task.

The next three strategies — Reprompt, YouCanSay and AskRephrase, form
a second tier, all having a statistically better recovery rate than the last four
strategies. Finally, no significant differences could be detected in terms of
recovery rate between the last four strategies: DetailedReprompt, Notify,
AskRepeat and Yield.

6. User Responses to Non-Understanding
Recovery Strategies

We now move on to the fourth question: what are the relationships between
each strategy and subsequent user behaviours, and which behaviours are
more likely to lead to successful recovery? Like before, the analysis is based
on data from the control condition, where the strategies were engaged in an
uninformed fashion.

To perform this analysis, we annotated each user turn that followed a non-
understanding according to a tagging scheme for error segments introduced
by Shin et al. (2002), and subsequently used by others (Choularton and Dale,
2004; Raux et al., 2005). Like Choularton and Dale (2004), we used an abbre-
viated version of the original scheme, containing five labels: repeat — when
the user repeats the previous utterance identically, rephrase — when the user
rephrases the same semantic content in a different lexical manner, change —
when the user changes the semantic concepts with respect to the previous ut-
terance, contradict — when the user contradicts the system, often as a barge-in
and other — subsumes response types which do not fall in any of the previous
categories (e.g. hang-ups and timeouts).



Sorry, I Didn’t Catch That! 139

Figure 7 shows the overall distribution of user response types in our dataset.
As a reference, we also show the user response type distributions found by
Shin in an analysis of the Communicator corpus, and Choularton and Dale
in an analysis of a deployed system for ordering pizza. Note however that a
direct comparison between these experiments is not valid since we only con-
sidered the user responses which followed a non-understanding (as opposed
to throughout any error segment). The distribution of user response types we
observed is nonetheless similar to previous studies. When faced with non-
understandings, users tend to rephrase (∼45%) more than repeat (∼20%). A
notable difference in the distribution appears between the change and contra-
dict user response types. The fact that we only considered turns following non-
understandings potentially explains the absence of contradicts (which happen
mostly when a system misunderstands), while the large number of change re-
sponses is introduced by the MoveOn strategy — see Figure 8 and also ad-
ditional plots available on-line (Bohus, 2005). While in Shin’s study of the
Communicator data a lot of change responses occurred as users were changing
their travel plans to go around weaknesses in the system, this is not the case in
this data. Participants in our study were compensated according to the number
of scenarios they managed to complete successfully, and the change responses
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represent valid contributions to the dialogue, within the confines of the given
scenarios.

Next, we analysed the impact of strategies on user response types. The re-
sults are presented in Figure 8. The AskRepeat strategy leads to the largest
number of repeat responses (31%); the MoveOn strategy leads to the largest
number of change responses (52%); the AskRephrase and Notify strategies lead
to the largest number of rephrase responses (64%). While there is clearly an
effect of strategy on user response types, the numbers shown above are not
extremely large. Under the assumption that certain types of user responses
are more desirable in certain circumstances, these results raise the question
of whether the user response types can be controlled even more, for instance
by using a more aggressive prompting style (e.g. “Could you repeat what you
just said?” instead of “Can you please repeat that?”).

Finally, we analysed which type of user responses are more likely to lead
to recovery. Figure 9 shows the recovery rate for each user response type. The
best recovery performance is attained on change responses (63%). Together
with the large number of change responses on the MoveOn and help strategies,
this result corroborates the high performance of these strategies, and the dis-
cussion from Section 5. Somewhat surprisingly, we were not able to establish
a statistically significant difference between the recovery rates of user repeat
and rephrase responses. In this respect, our results conflict with prior studies
which have shown that user rephrases are better recognised and more likely to
lead to recovery (Goldberg et al., 2003). Furthermore, the same analysis per-
formed on the sessions collected in the wizard condition (recall that in this case
a human wizard decided which strategy should be engaged to recover) shows
that in that case repeat responses were actually significantly better recognised
than rephrase responses. Briefly, we believe this last result is explained by the
fact that the wizard made intensive use of the AskRepeat strategy, when this
strategy was appropriate; this in turn boosted the overall number as well as
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recovery performance of repeat responses. This does not imply that the system
would be able to accomplish the same performance; it merely shows that the
relationship between strategies, user responses and how these responses can be
interpreted by the system depends on the policy used to engage the strategies.

Given these observations, we conclude this section on a cautionary note:
while informative, results regarding the performance of various strategies and
user responses do not necessarily generalise across domains and systems. The
success of various types of user responses can be strongly influenced by a num-
ber of factors such as the nature of the task, the user population, as well as the
policy used to engage the strategies. We believe that the solution for successful
recovery lies in endowing spoken dialogue systems with the capacity to dy-
namically adjust their error handling behaviours to the specific characteristics
of the domains in which they operate.

7. The Effect of Recovery Policy
on Performance: Wizard versus Uninformed

So far we have concentrated our attention on the function and performance of
individual recovery strategies. In the two remaining sections we will shift our
focus to the non-understanding recovery policy. The recovery policy describes
which strategy should be used in each situation.

Our goal is to endow spoken dialogue systems with the ability to automati-
cally learn good recovery policies from their own experience. We start with the
conjecture that the performance of various recovery strategies can be improved
by engaging them at the right time, i.e. by using a good recovery policy. For
example, asking the user to repeat is not a good course of action if the non-
understanding was the result of an out-of-vocabulary word. In contrast, if the
non-understanding was caused by a transient noise (e.g. a door slam), asking
the user to repeat is probably more likely to succeed. This hypothesis can be
stated as: a good non-understanding recovery policy can improve the (local)
recovery performance. However, in the end we are interested in improving
not only local, but also global dialogue performance. A second hypothesis we
therefore need to investigate is: a good non-understanding recovery policy
can improve global dialogue performance.

The validity of these hypotheses is not as obvious as it might seem. The
performance of the error recovery process is a product of both the set of avail-
able strategies and the policy used to engage them. If the set of strategies does
not provide good coverage for the types of problems we encounter, a good
policy will fail to significantly increase performance. Should this be the case,
our efforts would probably be better focused on developing more (and differ-
ent) recovery strategies, rather than trying to learn a better policy. Finally, even
if local recovery performance can be improved by using a smarter recovery
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policy, will these local improvements be sufficient to improve global perfor-
mance, i.e. task success?

To find an answer for the questions raised above, we compared the perfor-
mance of the wizard’s recovery policy against the performance of the unin-
formed policy. Recall that the wizard had access to more information than a
system would have at runtime, and therefore the detection of a performance
gap between the policies does not prove that the wizard’s policy is also attain-
able for a system; it only proves that a better policy exists (see discussion in
Section 2.1). We start by describing the dialogue performance metrics we used
in the comparison in Section 7.1, and we present the results of the compar-
ison in Section 7.2. Finally, in Section 7.3 we analyse the effect of the wiz-
ard policy on the performance of the individual non-understanding recovery
strategies.

7.1 Performance Metrics
To evaluate global dialogue performance we used two metrics: task success
and user satisfaction. Task success was defined as a binary variable for each
of the 10 scenarios performed by a user. User satisfaction was expressed on
a 1–7 Likert scale, and was elicited through a post-experiment questionnaire.
The user satisfaction score corresponds therefore to the overall experience the
user had with the system.

Apart from global dialogue performance, we also wanted to assess the im-
pact of the wizard policy on local non-understanding recovery performance.
To our knowledge no traditional, well-established metrics exist in the commu-
nity for performing this type of evaluation. We therefore constructed a number
of metrics which we describe below. Each of these metrics evaluates various
characteristics of the user response following the system’s attempt to recover
from a non-understanding.

The first metric, which we have already introduced in Section 4, was re-
covery rate. To compute this metric, we simply look at whether the next user
turn following a system attempt to recover is correctly understood or not. If the
next turn is correctly understood (i.e. it is not a misunderstanding and it is not
a non-understanding), then we say that the system has successfully recovered.
Average recovery rate is then simply defined as the number of successful re-
coveries with respect to the total number of attempts to recover. The underlying
variable in this metric is binary — the next turn is either correctly understood
or not. The metric therefore does not take into account the magnitude or costs
of potential errors. Nevertheless, this metric provides a first order estimate of
recovery performance and (because of low variance) is especially useful when
we have only a small number of samples to evaluate from.
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A second metric we considered was recovery word error rate. Instead of
looking at whether the next turn is correctly understood or not, we compute
and average the word error rate for the user turns following non-understanding
recovery attempts. This metric captures in more detail the magnitude of the
speech recognition errors in the user responses. However, in a spoken dialogue
system we are interested in the correctness of concepts acquired by the system
rather than the correctness of the recognition process per se.

The third metric we used, recovery concept utility, operates at the concept
level. This metric takes into account the number of concepts that are correctly
and incorrectly acquired by the system, as well as their relative utilities. The
metric is computed as follows:

CU = UtilCC · CC + UtilIC · IC (6.2)

where CC is the number of concepts that are correctly acquired by the system
from the user’s response, and IC is the number of concepts that are incorrectly
acquired from that turn. UtilCC and UtilIC are weighting factors for the cor-
rectly and incorrectly acquired concepts and are obtained through a logistic re-
gression model which relates the average number of correctly and incorrectly
acquired concepts per turn to overall task success. A model constructed with
in-domain data showed that UtilCC = +7.81, and UtilIC = −7.19. For the
interested reader, the methodology for deriving these costs is described in more
detail in (Bohus and Rudnicky, 2005). Because it takes the domain-specific
costs for correct and incorrect concepts into account, we consider this metric
more appropriate than the traditional concept error rate.

Finally, the last metric we considered was recovery efficiency. This metric
goes one step further than the recovery concept utility, and also normalises for
the amount of time spent by the system during the recovery strategy. The mo-
tivation behind this metric is that some recovery strategies use shorter prompts
than others, and therefore might succeed (or fail) faster. To normalise for the
amount of time spent during recovery, we compute the number of concepts
(correct and incorrect) we would expect the system to acquire on average dur-
ing that time interval. We then subtract these numbers from the number of
correct and incorrect concepts we did actually acquire in the next user turn.
The formula for this metric is:

RE = UtilCC · (CC − t · rcc) + UtilIC · (IC − t · ric) (6.3)

where t is the time elapsed between the original non-understanding and the
next user turn, and rcc (and ric) are the average rates (per second) of acquiring
correct (and incorrect) concepts during non-understanding recovery segments.
In other words, during the amount of time t the system spent in its attempt
to recover, we would expect to obtain on average t · rcc correct concepts and
t · ric incorrect concepts. We subtract these from the actual number of correct
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(CC) and incorrect (IC) concepts we obtained in the user response, and then
we take the corresponding utilities into account.

7.2 Results
The results of the comparison are shown in Table 5 and illustrated in Figure 10
(a)–(f). Since performance varies considerably between the native and non-
native users, we present the breakdown of the differences in these two pop-
ulations. In Table 5, the second column shows the overall performance (both
groups together); the third column shows the overall differences between the
wizard and the control conditions, while columns 4 and 5 show the differences

Table 5. Performance comparison between the wizard and the uninformed recovery policy
(bold entries mark differences that are significant at p < 0.05).

Metric Overall Wizard vs Wizard vs Wizard vs
Uninformed Uninformed Uninformed

(natives) (non-natives)

Task Success (%) (a) 75.1 78.5 ≈ 71.7 85.2 ≈ 85.2 57.4 > 31.6
User Satisfaction (1–7) (b) 3.93 3.87 ≈ 4.00 4.29 ≈ 4.47 2.67 ≈ 2.67

Recovery Rate (%) (c) 48.7 50.1 ≈ 46.5 61.0 ≈ 56.4 37.9 ≈ 34.4
Recovery WER (%) (d) 38.9 35.4 < 44.5 26.6 < 35.7 46.4 < 55.7
Recovery concept utility (e) 2.80 3.01 ≈ 2.58 4.13 ≈ 4.12 1.62 > 0.63
Recovery efficiency (f) 0.41 0.81 > 0.00 1.74 ≈ 1.50 −0.34 > −1.90
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Figure 10. Performance comparison between the uninformed (white bars) and wizard (grey
bars) recovery policy (* marks statistically significant differences at p < 0.05).
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between conditions within the native and non-native populations. To test for
statistical significance we used t-tests when comparing proportions (e.g. task
success or recovery rate), and non-parametric Mann–Whitney U-tests for the
other continuous-valued metrics (their values are not normally distributed).

As Figure 10 and Table 5 illustrate, an overall pattern emerges. The wizard
policy does indeed lead to statistically significant performance improvements
on a number of metrics, but the improvements appear mostly within the non-
native population, i.e. in the group of users that had more difficulties using the
system.

For instance, while no task success improvement can be detected for na-
tive users, there is a large task success improvement for non-native users (see
Figure 10a). The average task success rate grows from 31.6% in the control
condition to 57.4% in the wizard condition. This increase bridges half of the
original performance gap between native and non-native users in the control
condition. Despite this increase in task success rate, no statistically significant
differences can be detected with respect to user satisfaction (Figure 10b); the
small number of samples we have (one per user) and the large variance of this
metric lead to wide confidence bounds on the mean estimates and preclude a
reliable comparison. Nevertheless, the same trend of larger, statistically sig-
nificant improvements for the non-native users is observed again on the local
recovery performance metrics (Figure 10c–f). Statistically significant improve-
ments can be detected in the non-native population for three of these metrics:
recovery word error rate, recovery concept utility, and recovery efficiency.

We believe the explanation for the observed result lies in the simple fact that
it is easier to improve performance when performance is low (in our case, for
the non-native users). This result also confirms our conjecture from Section 4:
improvements in non-understanding recovery performance do indeed translate
into significant increases in task success for the non-native population.

7.3 Effect of Policy on Individual Recovery
Strategy Performance

Next, we analysed the effect of the policy on the performance of individual re-
covery strategies. Our original hypothesis was that, if the strategies are engaged
“at the right time”, their performance would improve.

Figure 11 shows the number of times each non-understanding recovery strat-
egy was engaged by the wizard. Figure 12 shows the recovery rate for each of
the 10 strategies, under the two different conditions. We were able to establish
a statistically significant difference (p = 0.0023, or p = 0.023 Bonferroni cor-
rected for multiple comparisons (Savin, 1980)) only for the AskRepeat strat-
egy. AskRepeat is however the strategy most often engaged by the wizard.
While this strategy ranked 9th when engaged in an uninformed fashion, its
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performance improved considerably from 33.7% to 53% under the wizard pol-
icy and is on par with the other top-performing strategies such as giving help
(TerseYouCanSay and Help) or advancing the task by asking a different ques-
tion (MoveOn). The same improvement in the AskRepeat strategy was also
detected on the other three recovery performance metrics.

This result shows that strategy performance can indeed be improved by the
use of a better recovery policy. At the same time, the lack of detectable dif-
ferences in the other strategies is somewhat disappointing. In retrospect, this
result might be explained by the fact that the decision task the wizard had to
perform was quite difficult, even with access to the full audio signal. To main-
tain the illusion that users were interacting with an autonomous system, the
wizard had to choose one of ten recovery strategies in a very short time inter-
val: 1–2 seconds. This selection task is easier for some of the strategies than
for others. Furthermore, a number of strategies, such as YouCanSay, Reprompt,
and DetailedReprompt, were very rarely engaged by the wizard and as a result
the confidence intervals on their performance estimates are very wide, and pre-
clude accurate comparisons.
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8. Towards Learning a Recovery Policy
In the previous section we have established that significant improvements in
performance can be achieved by using a better policy with the current set of
strategies. In this section we present a set of preliminary results on the problem
of learning such a policy from data.

We take a simple, decision-theoretic approach. First, we learn to predict
the likelihood of success for each non-understanding recovery strategy from
features available at runtime. Then, to implement a policy, we compute the ex-
pected utility for each strategy (taking into account the probabilities and costs
for success and failure), and select the strategy with the maximum expected
utility.

In Section 8.1, we describe the construction of predictors for the likelihood
of success of each strategy. Next, in Section 8.2 we discuss two recovery poli-
cies based on these predictors.

8.1 Predicting the Likelihood of Success
for Non-Understanding Recovery Strategies

We use logistic regression models to develop runtime predictors for the likeli-
hood of success of each non-understanding recovery strategy.

8.1.1 Data. As training data, we use the turns in which a non-
understanding occurred and the strategy we are interested in was engaged. The
training target value is the success or failure of the strategy in that particular
case. Success is defined as “the next user turn is correctly understood by the
system”.

Note that for learning we only use data collected in the control condition,
where the non-understanding recovery strategies were engaged in an unin-
formed fashion. The wizard policy might introduce a potential bias in the dis-
tribution of features, which can negatively affect learning and generalisation.
For instance, if the wizard never used the AskRepeat strategy when the number
of words in the original non-understood utterance was very large, we will never
encounter that set of circumstances, or see how the AskRepeat strategy behaves
under those conditions. In this case, the distribution of the number of words
feature might be skewed towards small values, and that might negatively affect
the learning process.

Given the relatively large number of different recovery strategies in the sys-
tem (10), the number of available instances to learn from is fairly small —
at about 60–70 invocations per strategy. The small number of samples further
complicates an already difficult learning problem, since we face a relatively
high risk of over-fitting the training data.
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8.1.2 Features. We identified a large number of features available
at runtime which could carry information about the likelihood of success for
various non-understanding recovery strategies. The features are collected from
different levels of processing in the spoken dialogue system. For instance,
from the speech recognition level we collected various features characteris-
ing the current non-understood utterance: the number of words, the signal and
noise levels, the number of and proportion of words tagged as unconfident by
the speech recogniser. Similarly, from the language understanding level we
collected various features reflecting the quality of the parse. From the dialogue
management level we used information about the dialogue state, as well as
the history of the dialogue up to that point (e.g. how many previous consec-
utive non-understandings we encountered, what was the average confidence
score so far, etc.)

As a first measure to guard against over-fitting, we transformed continuous
features into binary features by using a preset threshold. Furthermore, we elim-
inated features that had small class-conditional counts. The remaining set of
features which was used in training is available as an online appendix (Bohus,
2005).

8.1.3 Models. Since we are interested in predicting the expected
likelihood of success for each strategy (rather than a binary success or failure),
we decided to use stepwise logistic regression models. These models are sim-
ple, easy to build and incorporate a mechanism for feature selection. Moreover,
as opposed to a number of other discriminative classifiers, logistic regression
provides good class posterior probability scores (e.g. estimates for the likeli-
hood of success).

In stepwise logistic regression, features (variables) are added to the model
one by one, as long as they increase the likelihood of the data. A feature is ac-
cepted in the model if it produces a data likelihood increase that is statistically
significant with a p-value below a preset P −accept. At the same time, in each
step features already in the model are tested for exclusion. A feature is rejected
if the resulting model is not significantly worse, as determined by a preset
P − reject. In our case, we set P − accept = 0.05 and P − reject = 0.30.
Finally, as a second preventive measure against over-fitting, we evaluated the
model after each regression step using a leave-one-out procedure and stopped
adding features as soon as the average data likelihood in the leave-one-out
evaluation decreased.

8.1.4 Results. We fitted ten stepwise logistic regression models,
one for each strategy. The results are illustrated in Table 6. For five of the ten
strategies we can build models which perform better than a majority baseline,
on both a soft (average log-likelihood) and hard (binary classification) error
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Table 6. Performance of success predictors for the 10 non-understanding recovery strategies.

Strategy Avg. data log-likelihood Hard error rate (%)
Majority Leave-one Avg. LL Majority Leave-one Relative
baseline out perf. increase baseline out perf. reduction in

error rate

DetailedReprompt −0.6626 −0.6330 0.0296 37.7% 34.4% 8.7%
Reprompt −0.6930 −0.6645 0.0286 49.2% 32.8% 33.3%
TerseYouCanSay −0.6846 −0.6576 0.0270 43.5% 32.6% 25.0%
MoveOn −0.6508 −0.6357 0.0151 35.6% 30.0% 15.6%
YouCanSay −0.6927 −0.6729 0.0199 48.6% 34.3% 29.4%
AskRepeat −0.6391 −0.6389 0.0002 33.7% 33.7% 0.0%
Help −0.6788 −0.6776 0.0012 41.5% 46.1% −11.1%
AskRephrase −0.6921 – – 47.8% – –
Notify −0.6518 – – 35.7% – –
Yield −0.6211 – – 31.2% – –

metric. For the last three models in Table 6 no features ever entered the re-
gression. In this case the constructed predictors simply predict a probability of
success equal to the majority baseline in the training data. In general, the per-
formance of the individual predictors is not very good, but this is not surprising
given the small number of training instances, the reduced number of features
used, and difficulty of the prediction task (we are trying to predict in advance
whether or not the next turn is correctly understood, without any information
from that turn.)

8.2 Policies for Recovery
If we can predict for the likelihood of success of each non-understanding
recovery strategy, a recovery policy is easy to construct: we simply choose
the action with the maximum expected utility:

Π = arg max{PSUCC(S) · USUCC(S) + PFAIL(S) · UFAIL(S)} (6.4)

where PSUCC(S) is the estimated probability of success for strategy S,
PFAIL(S) = 1 − PSUCC(S) is the probability of failure, and USUCC(S) and
UFAIL(S) are the utilities of success and failure for strategy S.

We defined two policies. The first policy (max-recovery-rate) aims to max-
imise the recovery rate by choosing the strategy with the maximum likelihood
of success. This is equivalent to using the values USUCC = 1 and UFAIL =
0 as the utilities for success and failure. The second policy (max-recovery-
efficiency) aims to maximise the recovery efficiency, as defined in Section 7.1.
In this case USUCC(S) is the average recovery efficiency of strategy S when
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S was successful (i.e. the next turn is correctly understood), while UFAIL(S)
is the average recovery efficiency of strategy S when S failed.

To obtain a preliminary estimate for the performance of these policies, we
looked at what happened in the data from the wizard condition, when the wiz-
ard happened to make the same decisions as our learned policies would have
made. Since the MoveOn strategy was not available at all points in the dialogue,
we eliminated it from the learned policies in this analysis (this is a simple way
to avoid the policy deciding to engage the MoveOn strategy when it is not
available). The results show that, within the subset of instances where the wiz-
ard made the same decision as the max-recovery-rate policy, the recovery rate
performance was 69.8%. At the same time, the wizard’s overall recovery rate
(throughout the whole wizard dataset) was significantly lower — 50.1% (see
Table 5); also, the overall recovery rate with the uninformed policy from the
control group was 46.5% (see Table 5).

Similarly, on the instances where the wizard agreed with the max-recovery-
efficiency policy, the recovery efficiency performance was 2.02, significantly
larger than the overall wizard recovery efficiency (0.81), and the uninformed
policy recovery efficiency (0.00).

While we view these results as promising, we would like to point out a
potential problem in this type of evaluation. Given that both the wizard and the
learned policy strive to maximise performance, the distribution of the subset
of non-understandings where they agree might not be representative for the
true distribution of non-understandings — these might be the cases where it
is easier to tell which strategy should be used to recover. Ultimately, a new
user study where the system runs with the learned policy is required in order
to robustly evaluate its performance.

9. Conclusion
The work described in this chapter is part of a larger research program (Bohus,
2004) aimed at endowing spoken dialogue systems with better error handling
capabilities. In an effort to shed more light on non-understandings, we per-
formed an empirical analysis of these errors and 10 associated recovery strate-
gies, based on a corpus of dialogues collected with a mixed-initiative spoken
dialogue system for making conference room reservations.

An error source analysis has confirmed that a large number of non-
understandings (and misunderstandings) can be blamed on speech recognition
errors. Nevertheless, a significant number of non-understandings (∼30%) stem
from requests for inexistent application functionality, user corrections, and out-
of-grammar expressions. At the same time, users are not always aware of the
full functionality provided by the system. We believe these language-domain
errors can be addressed by better steering the users into the application’s space.
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In this vein, we plan to explore more carefully the design and use of you-can-
say help messages. Currently these messages inform users about possible ways
to answer the current question. In the future, we plan to investigate the possi-
bility of providing information about other options available at this point in
the dialogue. This raises an interesting design issue, since the number of dif-
ferent options available to the user can be fairly large in a mixed-initiative
spoken dialogue system. A targeted-help approach (Gorrell et al., 2002) may
provide a potential solution to this problem. A second path we intend to ex-
plore is issuing you-can-say messages preemptively (e.g. without waiting for
a non-understanding to happen) if we can detect that the user belongs to a
“problematic” population such as non-native speakers, first time users, etc.

We have also confirmed that non-understandings exert a negative impact on
task success, and we have quantified this impact. Models discussed in Section 4
revealed that the effect of non-understandings on task success is marginal
when the frequency of non-understandings is below 10–15%, but increases fast
after that. Similarly, we found that the effect of the non-understanding recov-
ery rate on performance is greatest when the recovery rate is below 60–70%,
and smaller once we are above that limit. While the specific numbers might
differ across applications and domains, we expect that the nature of the rela-
tionship remains similar. The type of analysis we presented in Section 4 can
provide useful information for focusing future development efforts. In our do-
main, it indicates that improvements in the non-understanding recovery rate
are likely to lead to significant increases in task success, especially for non-
native users (where the non-understanding rate is relatively high, and the non-
understanding recovery rate is relatively low).

Next, we compared the individual performance of the ten different recovery
strategies. The results show that, when engaged without any prior knowledge,
the best performing strategies in our domain are: (1) advancing the conver-
sation by ignoring the non-understanding and trying an alternative dialogue
plan (MoveOn), and (2) providing help messages containing sample responses
for the current system question. The high performance of the MoveOn strat-
egy corroborates prior evidence from a Wizard-of-Oz study (Skantze, 2003)
which showed that human operators often do not signal non-understandings,
but rather try to advance the task by asking different questions. In the future,
we plan to explore in more detail the potential uses of this strategy, as well
as its pitfalls. Specific issues we plan to investigate include identifying more
situations in which this strategy is applicable, studying the extent to which this
strategy can be decoupled from the system’s task, and developing more appro-
priate metrics for assessing its performance.

In the final part of this chapter we shifted our attention to the recov-
ery policy. We showed that a more informed policy for engaging the non-
understanding recovery strategies (implemented by a human wizard) led to
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significant improvements in task success, as well as a number of other local
performance metrics. The improvements occurred mostly within the non-
native population, i.e. the group of users who had more difficulties in using the
system.

Finally, we reported a set of preliminary results with respect to learning a
recovery policy from data. We used features available at runtime from various
levels in the dialogue system to build predictors for the likelihood of success of
each non-understanding recovery strategy. For five of the strategies, the learned
predictors perform better than a majority baseline. Based on these predictors,
we constructed two policies: one aims to maximise the recovery rate, the other
aims to maximise the recovery efficiency. Preliminary estimates indicate that
these policies are expected to outperform both the wizard and the uninformed
policy. While these experiments were conducted with very few training in-
stances and an empirical validation of the learned policy is still necessary, we
find these results encouraging as they indicate the feasibility of using a learning
approach for deriving a non-understanding recovery policy from data.
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Chapter 7

GALATEA: A DISCOURSE MODELLER
SUPPORTING CONCEPT-LEVEL ERROR
HANDLING IN SPOKEN DIALOGUE
SYSTEMS
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Abstract In this chapter, a discourse modeller for conversational spoken dialogue systems,
called GALATEA, is presented. Apart from handling the resolution of ellipses and
anaphora, it tracks the “grounding status” of concepts that are mentioned during
the discourse, i.e., information about who said what when. This grounding infor-
mation also contains concept confidence scores that are derived from the speech
recogniser word confidence scores. The discourse model may then be used for
concept-level error handling, i.e., grounding of concepts, fragmentary clarifica-
tion requests, and detection of erroneous concepts in the model at later stages in
the dialogue. An evaluation of GALATEA, used in a complete spoken dialogue
system with naive users, is also presented.

Keywords: Spoken dialogue systems; Grounding; Clarification; Error handling; Discourse
modelling.

1. Introduction
A common source of errors in spoken dialogue systems is the speech recog-
niser (ASR), and the handling of such errors is a crucial issue in the design
of spoken dialogue systems. The most common way of handling such errors
has been to use utterance confidence scores for selecting implicit or explicit
verification of full utterances. This is often feasible in dialogues where utter-
ances are relatively short and predictable. However, in dialogue systems that
are designed to allow relatively free, conversational speech, with longer, more
unpredictable utterances, such utterance-level error handling is too simplistic.
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In such systems, it is common to use statistical n-gram language models in the
ASR. These tend to be better at covering conversational language and degrade
more gracefully when the user’s utterances are poorly covered by the gram-
mar (Knight et al., 2001), but they may also give rise to speech recognition
results which are often only partly correct. When making semantic interpre-
tations of such results, some semantic concepts will be correct and some not.
This calls for error handling on the concept level, i.e., individual concepts in
utterances should be assigned confidence scores and be considered for error
handling strategies, such as grounding, clarification and error detection.

In this chapter, a discourse modeller for conversational spoken language,
called GALATEA, is presented. It is especially designed to support concept-
level error handling. GALATEA is not a complete dialogue manager, but rather
a processing step in the interpretation process, where utterances are interpreted
in context. Apart from handling the resolution of ellipses and anaphora, it
tracks the grounding status of concepts that are mentioned during the discourse,
i.e., information about who said what when. This grounding information also
contains concept confidence scores that are derived from the speech recogniser
word confidence scores. GALATEA builds a discourse model – a model of what
has been said during the discourse and which entities are referred to. The dis-
course model may then be consulted by an action manager that selects error
handling strategies, such as grounding, clarification and late error detection,
on the concept level.

GALATEA is developed within the HIGGINS project (Edlund et al., 2004).
HIGGINS is a test bed for investigating error handling techniques in spoken dia-
logue systems. The initial domain chosen for HIGGINS is that of pedestrian city
navigation and guiding, which is similar to the now classic MapTask domain
(Anderson et al., 1991), as well as to a number of guide systems, such as REAL
(Baus et al., 2002). A user gives the system a destination and the system guides
the user by giving verbal instructions. The system does not have access to the
users’ positions. Instead, it has to rely on their descriptions of their surround-
ings. Since the user is moving, the system continually has to update its model
of the user’s position and provide new, possibly amended instructions until the
destination is reached. For simulation, a 3D model of a virtual city is used (see
Figure 1). The domain is complex enough to generate a variety of error types.
The surroundings the user and system talk about contain complex landmarks
and relations that are challenging to interpret and represent semantically. For
such semantic representations, deep semantic structures are needed.

Table 1 shows a made-up scenario with recognition results, which displays
the current capabilities of the system.1 The different error handling techniques
illustrated in the example will be described later on.

1The system is currently built for Swedish, but all examples in this chapter have been translated into English.
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Figure 1. The 3D simulation that is used for user tests.

Table 1. A made-up example scenario. The rightmost column shows ASR results in which
word confidence scores are represented with different shades of grey, where dark means high
confidence.

Turn Transcription ASR result

S.1 Where do you want to go?
U.2 To an ATM. TO AN ATM
S.3 Ok, an ATM. Can you describe where you are

now?
U.4 I have a large concrete building on my left and

a tree in front of me.
I HAVE LARGE HELLO
CONCRETE BUILDING ON
MY LEFT AND TREE ON
RIGHT

S.5 What colour is the concrete building?
U.6 Red. RED
S.7 Ok, can you see a wooden building in front of

you?
U.8 No, but I have one on my right. NO I HAVE ONE ON RIGHT
S.9 On your right?
U.10 Yes. YES
S.11 Ok, I think I know where you are. Walk a little

bit forward and take a left after the red building.
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2. Error Handling in Dialogue Systems
In this section, issues important for error handling in spoken dialogue systems
will be discussed.

2.1 Miscommunication
Miscommunication is a general term that denotes all kinds of problems that
may occur in dialogue. A common distinction is made between misunder-
standing and non-understanding (e.g. Hirst et al., 1994). Misunderstanding
means that the addressee obtains an interpretation that is not in line with
the speaker’s intentions. If the addressee fails to obtain any interpretation at
all or obtains more than one interpretation with no way to choose among
them, a non-understanding has occurred. One important difference between
non-understandings and misunderstandings is that non-understandings are
recognised immediately by the addressee, while misunderstandings may not
be identified until a later stage in the dialogue. Both of these forms of mis-
communication may concern complete utterances or parts of utterances, i.e.,
partial misunderstanding and partial non-understanding.

One may also classify problems depending on at which “action level” they
occur. Clark (1996) and Allwood et al. (1992) make a distinction between four
levels of action that take place when a speaker is trying to say something to an
addressee. According to Clark, the levels are (from higher to lower):

Acceptance: proposal and consideration

Understanding: signalling and recognition

Perception: presentation and identification

Contact: execution and attention

For successful communication to take place, communication must succeed
at all levels on the “action ladder”, from contact to acceptance: the addressee
must attend to the listener, hear what is said, understand it and accept the pro-
posal. The order of the levels is important; in order to succeed on one level, all
the levels below it must be completed.

2.2 Early Error Detection
Given a speech recognition result, a system must determine if it should accept
the utterance and hypothesise that this is what the user said, or reject it. This
decision is often based on some sort of confidence score, which is compared to
a certain threshold. This is the process of early error detection. The confidence
scores are usually based on the probabilities from the acoustic and language
models, and the structure of the n-best list (Evermann and Woodland, 2000).
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To improve early error detection, machine-learning has been used to classify
utterances as correct or incorrect, based on features from the recognition result,
acoustic features, and dialogue history (e.g. Gabsdil and Lemon, 2004).

For concept-level error handling, confidence scores should be calculated
for the individual words in the speech recognition result, just like in Table 1,
and transferred into concept confidence scores during semantic interpretation
(Gabsdil and Bos, 2003). Skantze and Edlund (2004a) investigate the use of
machine learning for early error detection on the word-level, using confidence
scores as well as features from the utterance and discourse context.

2.3 Grounding
Speakers in dialogue can never take for granted that they have correctly un-
derstood what the interlocutor is saying. To deal with this uncertainty, speak-
ers constantly provide positive and negative “evidence of understanding” (or
“feedback” as in Allwood et al. (1992)) to each other. This is the process of
grounding (Clark, 1996). If positive evidence is given on one of the action lev-
els discussed above, all the levels below it are presumed to have succeeded. If
negative evidence is signalled on one of the levels, all the levels above it are
also presumed to have failed, while the ones below it are presumed to have
succeeded.

2.3.1 Display of understanding. According to Clark, every con-
tribution requires positive evidence, if it is to be regarded as common ground.
Clark (1996) discusses different kinds of positive evidence:

Assertion of understanding

Presupposition of understanding

Display of understanding

Exemplification of understanding

Assertion of understanding, such as “mhm”, “okay”, “I understand”, is com-
monly used as evidence of understanding. However, it can only give evidence
at the utterance level, and it does not ground anything at the concept level.
Presupposition of understanding means that the addressee continues with a
relevant next contribution, which may also give evidence at the utterance level.
The distinction between “display” and “exemplification” is not so clear, but
both include cases where the addressee displays or exemplifies what she has
constructed the speaker to mean in the next turn, including verbatim repetitions
or paraphrases. We will use the term “display” here for the cases where parts of
what is said is repeated. By displaying understanding – in this sense – speak-
ers may verify that their understanding is correct, which may also be done on
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the concept level. Take, for example, the turn S.5 in Table 1. Apart from re-
questing the colour of the building, the system also gives some evidence of
understanding. The understanding of the concepts CONCRETE and BUILDING
are displayed, but not the concept LARGE. If the understanding was incorrect,
i. e., a misunderstanding, the user now has the opportunity to correct the sys-
tem.

2.3.2 Clarification. If the addressee does not understand, or is not
sufficiently confident in parts of her understanding, she may choose to clarify
those parts, by posing a request. S.9 in Table 1 is an example, where the system
lacks confidence in the concept RIGHT. Such requests are often formulated as
yes/no questions. If the addressee is missing some part of the utterance, the
clarification request may instead be formulated as a wh-question. The system
could, for example, have said:

(1) What do you have on your right?

Purver et al. (2004) explore the different forms that clarification requests
may take, by studying the British National Corpus. An interesting finding is
that 45% of the clarification requests were elliptical or fragmental – just like
S.9 in Table 1. For concept-level error handling, these are especially interest-
ing, since they focus on problematic concepts and thereby make the dialogue
more efficient.

It is important to note that while clarification requests may signal non-
understanding, they may also give positive evidence of understanding by dis-
play, as is illustrated in (1). In this example, the system displays that it has
understood that the user has something on her right, but at the same time gives
negative evidence on its understanding of what it is.

The most explored techniques for grounding in spoken dialogue systems are
“explicit” and “implicit” verification, illustrated below:

(2) U.1 I have a large concrete building on my left
S.2e Do you have a large concrete building on your left?
S.2i (You have) a large concrete building on your left.
S.2ii What colour is the large concrete building that you have on

your left?

S.2e exemplifies explicit verification, which may be described as a clar-
ification request. S.2i exemplifies implicit verification, where the system
displays its understanding. These techniques may often be experienced as
tedious and unnatural, since they operate at the utterance level (including all
concepts in the utterance) and are realised as separate communicative acts.
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Implicit confirmation may also be integrated into the next act, as in S.2ii, but
as Gabsdil (2003) notes, this is done at the utterance-level. As the example
shows, this may sound unnatural and tedious, compared to just including the
most important concepts, as in S.5.

An important difference between clarification and display of understanding
is that the concepts are not considered as grounded after clarification requests
if they are not verified by the user, whereas a display of understanding does not
require such verification.

A dialogue system also needs to consider the case of complete non-
understanding. Typically, the system says something like “Sorry, I didn’t un-
derstand”, thereby encouraging the user to repeat. Skantze (2005) shows in an
experiment that this is not what humans typically do when faced with com-
plete non-understanding. Instead, they tend to ask new task-related questions
without signalling non-understanding.

2.3.3 Computational models of grounding. Traum (1994)
presents a computational model of grounding where a recursive transition net-
work is used to model the stages of the grounding process, including acknowl-
edgements, repairs, and request for repairs. Larsson (2002) describes a model
for grounding utterances, or issues, where positive and negative evidence is
given at all action levels, using the information state approach. While these
models handle the process of grounding information, the units that are con-
sidered for grounding are utterances or issues. The examples provided do not
show how individual concepts can be grounded. On these accounts, there are
special grounding or feedback utterances that are treated differently compared
to other utterances.

The approach taken here is instead to model the way all utterances may dis-
play understanding and how they contribute to the grounding process. On this
account, clarification requests and communicative acts that display understand-
ing are not special types of utterances. Instead, a general model for handling
assertions, requests and grounding is used. A problem with many models of
grounding is that negative answers to grounding and clarification moves are not
used as constraining information. For example, in Larsson (2002), a “backup”
copy of the dialogue state is kept to restore the state if the proposed interpreta-
tion is rejected. Consider example (2) above. If the user would answer “no”, the
fact that the user does not have a large concrete building on her left is valuable
information for constraining possible user positions. In HIGGINS, clarification
requests are treated as other requests, including the support for negations. The
way they are realised – in full form or as ellipses – will affect how they display
understanding.

Concept-level clarification requests have been studied to a greater extent
than concept-level display. Rieser (2004) and Schlangen (2004) describe
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implementations of systems that are capable of posing fragmentary clarifica-
tion requests based on concept confidence scores on all action levels. However,
the models do not handle the user’s reactions to those requests.

2.4 Late Error Detection
Clarification requests correspond to what Schegloff (1992) calls second-turn
repair, i.e., the repair is done in the second turn counting from the problematic
utterance. Third-turn repair occurs if an interlocutor gives positive evidence
of understanding and the first speaker realises that she has been misunderstood
and initiates a repair. By displaying evidence of understanding, the system may
detect errors by letting the user initiate a third-turn repair. Late error detection
is the task of detecting that the user has initiated such a repair, i.e., to detect a
previous misunderstanding. In Krahmer et al. (2001), memory-based learning
is used for detecting negative and positive cues in the third turn for late er-
ror detection. Bohus and Rudnicky (2005) call this the “belief updating prob-
lem”, i.e., how an initial belief in an interpretation of an utterance (first turn),
a system response to that utterance (second turn), and a user reaction to that
response (third turn), should be combined to form an updated belief in the in-
terpretation of the first turn. In their approach, binary logistic regression is used
to learn this classification, based on features such as initial confidence score,
prosody, barge-in, etc.

Late error detection may also be performed if an interlocutor realises that
her model of the world contains contradictory information. An example can be
seen in Table 1. After turn U.4, the system believes that the user has a tree on
her right, since there was an undetected misrecognition. But after turn U.10, the
system realises that there is no place the user could be. The only fact that has a
relatively low confidence and has not been grounded is that the user has a tree
on her right. The system may now assume that this was a misunderstanding,
and update its model.

2.5 Choosing Error Handling Strategies
The previous discussion shows that there are several ways to handle uncer-
tainty and errors in dialogue. A speaker may display understanding, request
clarification on what is not understood, or presuppose understanding and defer
the detection of errors to a later stage in the dialogue. As Allen et al. (1996)
point out, sometimes it may be better to “choose a specific interpretation and
run the risk of making a mistake as opposed to generating a clarification sub-
dialogue”. The choice of strategy should depend on the result of the early error
detection, i.e., how confident the system is in its understanding, but also on the
consequence that a misunderstanding would have; the cost of a potential mis-
understanding should be compared to the cost of making the grounding move.
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As an example, take utterance S.3 in Table 1. The system has a fairly high
confidence in the user’s position, but still chooses to give positive evidence of
understanding, instead of deferring the detection. The reason is that if the sys-
tem would misrecognise the user’s goal, the system would not detect the error
until the user had already reached the goal.

The possibility to defer error handling based on consequence of misunder-
standing has not been explored to a great extent; confidence scores are most
often only considered once and not stored for late error detection. To be able to
defer error detection, as well as choosing from different error handling strate-
gies on the concept level, the system should keep a model of when concepts
have been grounded, by whom and how confident the system is in this.

3. The Higgins Spoken Dialogue System
In this section, the architecture, semantic structures and modules of the HIG-
GINS spoken dialogue system will be described.

3.1 Architecture
The HIGGINS spoken dialogue system is a distributed architecture with mod-
ules communicating over sockets. Each module has well-defined interfaces,
and can be implemented in any language, running on any platform. The in-
terfaces are described using XML schema. Figure 2 shows the most impor-
tant modules and messages in HIGGINS, in the present configuration. From the

GALATEA:
Discourse modeller

Action Manager

PICKERING: Interpreter

Generator

TTS

ASR

Recognition result

CA

CA
Text

Discourse model

Domain database

Figure 2. The most important modules and messages in the HIGGINS architecture. CA stands
for communicative act.
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ASR, the top hypothesis with word confidence scores is sent to an interpreter,
called PICKERING. PICKERING recognises and creates context-free semantic
representations of communicative acts (CAs).

In HIGGINS, dialogue management is not implemented as a single module.
Instead, this processing is divided into a discourse modeller (GALATEA) and
an action manager. This division is similar to the approaches taken in Allen
et al. (2001) and Pfleger et al. (2003). The communicative acts are sent from
PICKERING to GALATEA, which does a context aware interpretation and builds
a discourse model. The discourse model is then sent to the action manager,
which consults the discourse model and the domain database to make decisions
and send communicative system acts. These acts are sent back to GALATEA, as
well as to a generator. Thus, GALATEA models communicative acts both from
the user and the system; ellipses, anaphora and grounding status are handled
and modelled in the same way for all communicative acts. The action manager
may also make changes to the discourse model, for example, if an error is
detected, and send it back to GALATEA.

From the generator, the textual representation of the system’s communica-
tive act, enriched with prosodic markup, is sent to a speech synthesiser (TTS).

GALATEA is fairly generic – a set of rules and semantic mappings (repre-
sented in XML) are written for the specific application. The action manager, on
the other hand, is highly domain dependent. However, much of the work that
a typical dialogue manager has to do, such as ellipsis and anaphora resolution,
is already resolved by GALATEA.

3.2 Semantic Representations
Semantic descriptions are consistently represented as rooted unordered trees
of semantic concepts. Nodes in the tree represent objects, relations, properties
and attribute-value pairs. Such structures are very flexible and can be used to
represent deep semantic structures, such as nested feature structures, as well
as simple forms, depending on the requirements of the domain. By using tree
matching, similar to Kilpelainen (1992), a pattern tree can be used to search
for instances in a given target tree. Thus, larger semantic structures can form
databases which may be searched. It is also possible to include variables in a
pattern tree for specifying constraints and extracting matching nodes, as well
as using special pattern nodes for negation, etc.

The semantic tree structures in HIGGINS, including the database, are repre-
sented in XML, using a schema that is specific for the domain. Figure 3 shows
an example: an abstract representation of a wooden building. Figure 4 shows
how the same structure can be visualised graphically as a tree structure using
XSLT and XHTML. The database in the HIGGINS navigation domain is a large
XML structure containing all landmarks and their properties, as well as a set of
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<object id="$id4">

<properties>

<type>

<value>building</value>

</type>

<material>

<value>wood</value>

</material>

</properties>

</object>

Figure 3. An abstract semantic representation of a wooden building in XML.

Figure 4. The same structure as in Figure 3, visualised graphically.

Figure 5. The semantic representation of the utterance “the building is made of wood”.

possible user positions and how they relate to the landmarks. All objects in the
database have IDs. The XML in Figure 3 could be used as a pattern to search
the database. Values starting with a dollar sign – id4 in the example – are
interpreted as variables. The result of this search would be a list of all possible
bindings of variable id4, i.e., a list of the IDs of all the wooden buildings in
the database.

The semantic representations may be enhanced with “meta-information”,
such as confidence scores, communicative acts, and if information is new or
given. Figure 5 shows the representation of the utterance “the building is made
of wood”. The structure tells us that this is a communicative act (CA) of the
type ASSERT, that the object is singular (SING), and that the object and type
are GIVEN information but the material NEW. This meta-information is needed
for representing utterances, but is not contained in the database. By removing
meta-information, the structure can be transformed to a database search pat-
tern, like the one in Figure 4, in order to find possible referents to the object
denoted in the utterance.

These structures make it fairly straightforward to represent the seman-
tics of verbs, relations, etc. They are just represented as single nodes or tree
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fragments. Tree structures may also be unified. A semantic template is used to
specify how the nodes may be structured, to guide the unification. The template
also makes it possible to unify structures starting at different levels in the tree.

3.3 Pickering: The Semantic Interpreter
The interpreter developed within HIGGINS is called PICKERING and is im-
plemented in Oz (http://www.mozart-oz.org/). The grammar used to parse re-
cognition results is based on context-free grammars, with some modifications.
Grammar rules are enhanced with semantic rules for generating the kind of
semantic trees described above. PICKERING can automatically make excep-
tions from the syntax given in the grammar by handling insertions and non-
agreement inside phrases and by combining non-continuous phrases. While
deviations from the grammar are allowed by PICKERING, they are taken into
account when choosing the best interpretation. Since PICKERING has access
to the semantic results, it can automatically filter out semantically equivalent
solutions by using tree comparison. For a more detailed description of PICK-
ERING, see Skantze and Edlund (2004b).

To make error handling on the concept level possible, PICKERING also auto-
matically transfers word confidence scores into the semantic trees. The seman-
tic template used for unification can be marked with slots for confidence scores.
The confidence scores for the words that are involved in creating a node with
such a slot are then averaged to compute a confidence score for the node. An
example semantic result with concept confidence scores is shown in Figure 6.

I HAVE LARGE HELLO CONCRETE BUILDING ON MY LEFT

Figure 6. The semantic result from Pickering, interpreting the first part of U.4 in Table 1,
with concept confidence scores.
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Insertions, such as “hello” in the example, should ideally lower the confidence
score for the concepts involved in the phrase, but they are not considered in the
current implementation.

3.4 The Action Manager
The discourse model can be compared with the information state used in
TrindiKit (Larsson and Traum, 2000). However, the discourse model only con-
tains information about what has been said, not the system’s plans or agenda –
this is modelled by the action manager. The action manager makes decisions
based on a fairly simple decision algorithm, similar to a decision tree, which
is traversed each time the discourse model gets updated. For example, after
U.2 in Table 1, the system first checks if there are any concepts that should be
grounded, and chooses to display understanding of “an ATM”. It then checks
the discourse model for the user’s goal, and finds that it is known. The next
thing to check is the user’s position, and since there is no information on that
in the discourse model, the action manager poses an open request on the user’s
position (S.3).

The notion of “issues” is central in the “issue-based approach” to dialogue
management proposed by Larsson (2002). In this approach, the system keeps
track of which issues are raised and when they are resolved or rejected. In the
domain considered here, we could say that an issue has been raised for exam-
ple when the system requests the user’s position. However, we have not found
the explicit representation of such issues necessary for managing this domain
using the approach presented in this chapter. Actually, it would be quite prob-
lematic to model issues in this domain, since it may often be hard to determine
when issues are resolved or rejected. Consider the following example, where
the system needs more information about the user’s position:

(3) S.1 Can you see a tree in front of you?
U.2 I have a red building on my left.

In this example, the user does not directly answer the question. However,
the system may now find out that it has enough information to continue with
route directions. Whether the “issue” raised by the first question is resolved or
not does not matter.

4. Galatea: The Discourse Modeller
The discourse modeller developed within HIGGINS and introduced here is
called GALATEA and is also implemented in Oz. The discourse model con-
sists of two lists: a ca-list and an entity list. The CA-list is a list of past
communicative acts in chronological order, with the most recent act first.
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The entity list is a list of entities mentioned in the discourse, with the most
recently mentioned entity first. The discourse model is represented in XML.

The discourse modeller has three main tasks:

Resolve ellipses by transforming them into full propositions, based on
the CA-list.

Resolve anaphora by extracting entities from the CAs and integrating
them into the entity list.

When new CAs are added to the model, grounding status is added to
nodes in the semantic representation, i.e., information about who added
the concept to the model, in which turn, and how confident the system is
in the concept. This information is also transferred to the entity list.

4.1 Ellipsis Resolution
GALATEA resolves ellipses by transforming them into full propositions. To do
this, domain-dependent transformation rules are used that transform commu-
nicative acts based on previous acts, similar to Carbonell (1983). Each rule
has semantic preconditions for the current elliptical CA and the previous CAs,
and a transformation description. The preconditions are formulated as seman-
tic pattern trees that are matched against the target CAs. Each rule is applied in
order, if the matching and transformation is successful, the algorithm restarts
with the transformed CA, until no more transformations can be done. Thus, a
cascade of rules may be applied. The rules are written in XML, but will not be
explained in more detail here.

Table 2 exemplifies a transformation based on a rule that handles all answers
to wh-requests, which are called content-requests here. The preconditions for
this rule is that the new CA is an ellipsis, and that there is a content-request in
the CA-list with a requested node marked with THEME:1. The transformation
description states that the ellipsis should be replaced by a new CA of type
ASSERT, where the top node in the request is copied and the THEME node is
unified with the first node that can be unified in the ellipsis – in this case the
COLOUR node. If the unification fails, the rule is not applied.

Transformation rules may also be used to interpret erroneous ASR results
in context, where PICKERING may have identified some fragment from a full
proposition. It is, of course, also possible to transform sentential ellipses such
as U.8 in Table 1, as well as non-elliptical CAs that are dependent on the context
for their interpretation. Each rule has a fairly generic purpose. Currently, about
10 different transformation rules are used for the navigation domain.
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Table 2. Example transformation of an ellipsis into full proposition.

4.2 Anaphora Resolution
GALATEA has no access to the domain database. Thus, it cannot map entities in
the discourse to real objects in the world. Instead, it keeps a list of entities that
are mentioned, e.g., “a large building”, in the discourse and assigns variable
IDs to them. The action manager may then use the entities in the discourse
model as patterns and make a database search to find possible referents, i.e.,
bindings to the entity id variables (as described on page 165).

When semantic structures are created in PICKERING, they are marked with
given/new status, based on definiteness and sentence structure. Some parts may
be given and some new, for example when asserting new information about a
given object. See Figure 5 for an example. After a CA has been transformed
and added to the CA-list, entities are extracted and added to the entity list. Each
time an entity marked as new is added to the entity list, it is placed on top. If an
entity marked as given is added, i.e., an anaphor, the entity list is searched from
top to bottom for an antecedent. The nodes marked as given in the entity to be
added are used as a search pattern and the potential antecedents as target, and
a pattern match is performed. If an antecedent is found, it is moved to the first
position in the entity list and unified with the added entity. If no antecedent is
found, the added entity is treated as new and simply placed first. The entity list
represents unified asserted information about entities – not the structure of the
utterances they were extracted from. Therefore, information about theme and
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given/new status is removed before integrating an entity. Also, nodes that only
denote requested concepts in a question are removed.

Since assertions about entities are unified in the entity list, it is possible to
refer to an entity using a description that has not been used before to refer
to that entity. For example, there is a reference in utterance S.11, in Table 1,
to “the red building”. There is no entity directly referred to in this way before,
but the entity list will contain one after U.6.

Before entities are added to the entity list, some early error detection is
also done on the concept level – concepts with low confidence are filtered out.
These concepts may be added later in the dialogue if they are clarified (which
will be described later on in this chapter). This means that the entity list will
contain unified information about entities in which the system has relatively
high confidence. Thus, the entity list could also be viewed as the system’s
model of the common ground.

The entity list may also be used by the action manager to select an appro-
priate referring expression for an entity, such as S.5 and S.11 in Table 1. If
the entity is on top of the list, a simple pronoun may be used (unless the en-
tity needs more grounding, which will be described later on in this chapter). If
there are other entities above it, the system may use a more elaborate definite
noun phrase.

4.3 Grounding Status
Handling anaphora and ellipses can be regarded as necessary basic capabili-
ties of a discourse modeller. The approaches to these issues presented here are
indeed quite simplistic and there are much more elaborate accounts (see, e.g.
Schlangen 2003 for ellipsis resolution). However, the approach taken here is
to model how ellipses and anaphora affect the grounding process. To do this,
GALATEA tracks the grounding status of concepts. The grounding status is in-
formation about who added the concept to the model, in which turn and how
confident the system is in the concept. Since the same concept may be men-
tioned several times, the grounding status is represented as a list of grounding
data. This way, the system may model grounding information over time. This
information may then be consulted for various error handling strategies, which
is described in the next section. The grounding status can be compared with
the “contextual functions” used in Heisterkamp and McGlashan (1996), and
the “discourse pegs” used in McTear et al. (2005), that are used to keep track
of the system’s belief in what has been said.

The grounding information is added before resolving ellipses and anaphora.
This ensures that only concepts that were part of the original utterance are
grounded, not those that are added in the ellipsis resolution. In the semantic
template used for unification, places where grounding information should be
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Table 3. How the grounding status for the entity that represents the concrete building gets
updated. Note that the COLOUR node is not included until U.6, since it is only requested in S.5.

added are marked. An example of how grounding is updated is provided in
Table 3. As can be seen in the table, each GROUNDING tag contains a list of CA-
tags, which represent communicative acts in which the concept was grounded.
Each such tag contains information on the speaker (AGENT), the turn (CAID)
and, if applicable, the concept confidence score (CONF), taken from the parse
result, as exemplified in Figure 6.
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5. Error Handling in Higgins
In this section, the techniques used in GALATEA and HIGGINS, as described
above, will be related to the error handling issues discussed in Section 2.

5.1 Early Error Detection
Early error detection is done in several steps in HIGGINS. First, PICKERING
ignores words that appear to be insertions inside phrases (like “hello” in 6),
and assigns confidence scores to concepts. Second, as entities are extracted
and added to the entity list in GALATEA, concepts with low confidence scores
are filtered out, and possibly clarified.

As described above, the system’s confidence in the concepts is then dynam-
ically modelled with grounding status. Currently, a very simple distinction is
made between high and low grounding status. If a concept is mentioned by the
system, it has a high grounding status. If it is only mentioned by the user,
the highest confidence score is compared against a threshold to determine
if the grounding status is high or low.

5.2 Display of Understanding
The entity list may be used by the action manager to display positive evidence
of understanding, by searching for concepts with low grounding status. This
may be done as a separate communicative act, as in S.3 in Table 1, or integrated
in another act, as in S.5. Since GALATEA also models the system’s actions,
those concepts will then have a high grounding status.

Every time the system refers to a given entity, appropriate integrated display
of understanding is automatically done. To construct a referring expression to
an entity that is on the entity list, the action manager simply makes a copy of
the entity and removes all concepts with high grounding status. This ensures
that the concepts with low grounding status will get a high grounding status.
An example is shown in Table 3. When the system needs to ask a question on
the colour of the building, it copies the entity and removes the concept LARGE,
since it has a high grounding status, based on the confidence score. The TYPE
concept (BUILDING) is not removed, since it is needed for a valid referring
expression – otherwise the system would say “what colour is the concrete”.

5.3 Fragmentary Clarification
The latest CA in the discourse model may be searched for concepts, or trees of
concepts, with low grounding status. As mentioned previously, these concepts
are not transferred to the entity list. The action manager may then embed such
a fragment in a CA of type request and send it to GALATEA and the genera-
tor. The generator will make a surface realisation of a fragmentary clarification
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request (with prosodic markup) and send it to the TTS. When GALATEA re-
ceives this elliptical CA, it will be transformed into a full yes/no request. This
way, subsequent reactions to this request will be interpreted correctly, while
only the concepts that are actually realised in the ellipsis will get an updated
grounding status. Table 4 shows how a clarification dialogue with elliptical
communicative acts is interpreted by GALATEA.

Negations and confirmations are represented with POLARITY nodes that are
attached to concepts. This makes it easy to represent and integrate “yes” and
“no” answers, as well as adverbial negations. Figure 7 shows the resulting en-
tity in the entity list after the dialogue in Table 4. As can be seen, the negative
answer is kept in the model. This is useful when constraining possible user
locations, since the POLARITY nodes are taken into account when doing tree
pattern matching. In Figure 7, the concept RED has been grounded and negated
after the clarification. Like all requests, clarification requests do not need to
be answered. If the clarification request would not have been answered, there
would be no information about the concept RED for this entity. This is also true
if the user would have answered just “green”, in which case the entity would
have the concept GREEN, but no information on the concept RED.

A concept may have several POLARITY nodes with different polarities and
the POLARITY nodes may also have grounding status, as can be seen in the
example. This makes it possible for one participant to confirm something while

Table 4. How a clarification dialogue is interpreted by GALATEA.

Turn Utterance After ellipsis resolution

U.1 I have a red building on my left [same]
S.2 red? + U.1 = is the building red?
U.3 no + S.2 = the building is not red

green + S.2 = the building is green

Figure 7. The resulting entity in the entity list after the clarification dialogue.
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another participant negates it. Thus, POLARITY nodes can be used to model the
“acceptance level” mentioned on page 158. This also means that POLARITY
nodes themselves may have a low grounding status, for example if the “no” in
Table 4 would get a low confidence score, and need further grounding.

5.4 Late Error Detection
Due to the misrecognition in U.4 (in Table 1), the discourse model will con-
tain an error. However, after turn U.10, the system discovers that there is no
place where the user can be. It may now use the grounding status in the dis-
course model to look for errors. The only concept with a low grounding status
is shown in Figure 8. This concept may be removed, and the system will still
have the information that the user can see a tree somewhere.

It is also possible to remove information that is associated with a specific
turn, by looking at the CAID attribute in the grounding status. The most ob-
vious case is when the system has just grounded some concepts and the user
signals a problem. The concepts associated with the system’s previous turn
may then be removed. For example, if the user had signalled a problem after
S.5 in Table 3, the system could remove the concepts CONCRETE and BUILD-
ING, or add negative POLARITY nodes to them. The model would still contain
the fact that the user has something large on her left.

Since the model also contains information about what the user has grounded,
it is possible to detect cases where the user misunderstands the system. For
example, the user never displays any understanding of the concepts WOOD and
BUILDING in U.8 in Table 1, which can be detected in the discourse model.

5.5 Choosing Strategy
Given these different error handling strategies the discourse model allows, the
question is how to choose strategy. Generally, low confidence scores lead to
clarification requests, mid confidences scores lead to display of understand-
ing, and high confidence scores lead to no grounding actions. Since the choice
of strategy is done in the action manager, it is possible to make a task-related
choice, i. e., to have different confidence thresholds for different tasks, depend-
ing on the consequence of misunderstanding, as discussed on page 162. For
example, when the user asserts the goal, as in S.1 in Table 1, the system has a

Figure 8. A concept with low grounding status is detected.
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much higher threshold for not displaying understanding. When the user asserts
her position in U.4, the system instead chooses to defer the handling of the low
confidence score in the concept RIGHT.

6. Evaluation
To evaluate the performance of the HIGGINS system in general and GALATEA in
particular, the complete system was tested with naive subjects using the system
in a laboratory setting with given scenarios. The analysis of the results should
be viewed as a proof of concept, to confirm that the system can interact with
naive users and perform reasonably well. No comparative evaluation, involving
other systems or different settings, is made. It is not possible to evaluate all
aspects of the techniques discussed in this chapter; the analysis of the results
will focus on robustness, ellipsis resolution and fragmentary clarification.

6.1 Setting
6.1.1 Subjects. Sixteen subjects participated in the evaluation, all
native speakers of Swedish. They were 7 women and 9 men, ranging in age
from 24 to 63 years (38 on average). Four of the subjects had some experience
of speech technology, but no experience of dialogue system design.

6.1.2 Procedure. Each subject was given the task of finding the
way to a given goal in a virtual city, by talking to a computer to get route
directions. They were told that they needed to tell the computer where they
wanted to go, that the computer had no knowledge of their current position,
but that the computer had a very detailed map of the city, and it was able to
locate them if they described their surroundings. The subjects were not given
any information about what kind of expressions the system could handle, or the
level of detail of the system’s knowledge. Four subsequent scenarios (goals)
were given to each subject, resulting in a total of 64 dialogues. During the
interaction, the experiment conductor was sitting in another room, overlooking
the interaction through a window, and did not answer any questions from the
subject. The subject was sitting in front of a computer screen, where the virtual
city was displayed, and used a mouse to walk around. The room was sound-
proof and the subject was wearing a headset. For each scenario, there was a
time limit of 10 minutes to reach the goal. After each scenario, the subjects
filled out a questionnaire about their experience of the interaction. However,
the results from this survey will not be used in the current analysis.

6.1.3 Data, ASR and TTS. The system was trained and con-
figured mainly based on two different sets of data. First, data from an experi-
ment in a similar domain in which subjects gave route directions to each other
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(Skantze, 2005). Second, a data collection where subjects were walking around
in the 3D virtual city, describing what they saw (Edlund et al., 2004). In addi-
tion to this, data were collected from four pilot sessions.

The collected data was used to write rules for PICKERING and GALATEA
and to program the action manager, as well as to train the ASR. An off-the-
shelf ASR was used with tri-gram class-based language models, trained on the
1,500 utterances that had been collected. The resulting vocabulary size was
approximately 600 words.

For TTS, a diphone Swedish male MBROLA voice was used (Dutoit et al.,
1996). The most challenging task for the TTS in this experiment was to pro-
duce fragmentary clarification requests, since the interpretation of them is
dependent on prosody to a large extent. Since system utterances were dy-
namically generated, it was not possible to handcraft the pitch curve for each
utterance. A commonly described tonal characteristic for questions is overall
higher pitch (Hirst and Di Cristo, 1998). Experiments on the prosody of synthe-
sised fragmentary grounding utterances (Edlund et al., 2005) have also shown
that a mid or late higher F0 peak differentiates clarification requests from
display of understanding, although there are differences in the interpretation
of the request depending on the position of the peak. Since the only available
parameters for the TTS were pitch range, speaking rate and pitch base, the
pitch range was simply increased for fragmentary clarification requests, as an
approximation to these findings.

6.2 Results
6.2.1 Annotation. The dialogues were transcribed and annotated
by one annotator. The segmentation of units for assigning features on the “ut-
terance” level is not straightforward. One segmentation was based on the ASR
endpoint detector, i.e., each ASR result was assigned a set of features. Another
set of features was assigned to each CA, as segmented by the annotator. There
was a pretty large discrepancy between these two methods for segmenting “ut-
terances”; some CAs were not detected at all by the ASR, some were split over
several ASR results, some ASR results contained several CAs. There were a
total of 1,894 ASR results and 2,007 CAs, 1,565 of the ASR results contained
only one unsplit CA.

Both ASR results and CAs were annotated based on how well they were un-
derstood by the system. Full “understanding” in this context means accurate
speech recognition, semantic interpretation, and discourse modelling (ellipsis
and anaphora resolution). A common measure for the performance of seman-
tic interpretation is “concept error rate”. This measure is easier to use when
the result of the interpretation process is a simple feature-value list that repre-
sents the semantic meaning of the utterance. In HIGGINS, however, the result is
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Table 5. The definitions of the understanding levels used in the annotation of ASR results
and CAs.

Und. Definition

FULLUND All concepts, relevant to the domain and task, are fully understood by the sys-
tem, including speech recognition, semantic interpretation, and discourse mod-
elling. Note that the full propositional meaning must be understood, i. e., frag-
mentary utterances have to be correctly transformed into full propositions, and
anaphoric expressions correctly resolved. This includes cases where the system
asks for clarification of some of the concepts in which it lacks confidence.

PARTUND Some (but not all) concepts are fully understood, according to the definition
above. This includes cases where just a fragment of the utterance is interpreted,
but the action manager uses this to pose a relevant question.

MISUND Some (or all) concepts in the interpretation of the utterance are incorrect. This
includes cases where the system asks for clarification on the incorrect concepts.

NONUND No concepts are understood. This includes cases where PICKERING might cor-
rectly interpret a fragment of the utterance (or a complete fragmentary utter-
ance), but GALATEA fails to resolve the ellipsis, and the action manager fails to
use the fragment to pose a relevant question.

NONHEAR The CA is not detected at all. (Not applicable to ASR results.)

an updated discourse model with tree-structured concepts, including identified
referents and enriched fragments. It is not easy to handcraft a target discourse
model to compare with for each utterance. Neither is it straightforward to mea-
sure the degree to which these structures are similar: the individual concepts
should be correct, but they should also be correctly structured. To make the
analysis more straightforward and the results easier to understand, five differ-
ent levels of understanding were defined. These levels are described in Table 5.

The CAs were also annotated based on the form and function of the utter-
ance. However, the scheme for this will not be described in detail here. An
excerpt from the collected data with the different understanding levels for each
CA is shown in Table 6.

6.2.2 General results. Of the 64 tasks, 50 were completed within
the time limit of 10 minutes. The tasks that succeeded took 4.3 minutes on
average.

On average, there were 3.9 words per CA. This relatively low figure can
be explained by the frequent use of short acknowledgements (like “yes” and
“ok”) during the direction giving phases of the dialogues, as well as the high
number of fragmentary utterances. Of all words spoken by the subjects, 1.6%
were out-of-vocabulary, not counting truncated words.

The ASR results had an average word error rate (WER) of 23.6%. Table 7
shows the distribution of understanding levels for ASR results and CAs, as well
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Table 6. A dialogue excerpt from the evaluation data, translated from Swedish. The third
column shows ASR results with the same representation as in Table 1. The fourth column shows
the understanding level that was assigned to the CA by the annotator.

Turn Transcription ASR result CA und.

U.1 I– I want to see a bus stop. YES I WANT TO GO TO A
BUS STOP

FULLUND

S.2 Ok, where are you?
U.3 Eh, I stand in front of a wooden

house with three storeys.
NOW IS I STAND IN
FRONT OF A WOODEN
HOUSE WITH THREE
STOREYS

FULLUND

S.4 Three?
U.5 Yes. YES FULLUND

S.6 OK, describe something more.
U.7 I see a sign that reads ... I SEE A SIGN THAT

READS
PARTUND

(with U.7b)
S.8 OK ...
U.7b Må– Måbär street. [undetected] (part of U.7)
S.9 Please wait ...
S.10 Can you see a brick building on

your left?
U.12 No, NOW ON MY RIGHT NONUND

U.13 on my right. PARTUND

S.14 What do you see on your right?
U.15 A brick building with three storeys. A BRICK BUILDING WITH

THREE STOREYS
FULLUND

S.16 OK, a brick building with three
storeys, hm ...

U.17 That is correct. [undetected] NONHEAR

S.18 I think I know where you are.
You should see an orange building.
Position yourself between it and
the three storey building made of
wood.

U.19 OK. OK FULLUND

as for the ASR results containing just one CA, and for the subset of these that
had a WER of 0%.

The rightmost column in Table 7 reflects the performance of PICKERING
and GALATEA, i.e., how well the rules written to handle the training data gen-
eralised to new data. Considering the limited “training data”, 92.9% FULLUND
should be considered as promising performance.

The third column (CAs) shows that 8.0% of the CAs were not detected by
the system at all. This is partly explained by the fact that there were a lot of
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Table 7. The number of instances and distribution of understanding for ASR results and CAs.
The fourth column shows ASR results which contain one unsplit CA. The fifth column shows
the subset of these that had a WER of 0%. The understanding levels are defined in Table 5.

ASR results CAs ASR res. = CA ASR res. = CA

0% WER

Instances 1894 2007 1565 1033

FULLUND 65.4% 66.2% 73.8% 92.9%
PARTUND 9.2% 5.8% 5.0% 1.6%
MISUND 10.1% 8.3% 9.5% 1.5%
NONUND 15.3% 11.8% 11.7% 3.9%
NONHEAR 8.0%

0%

20%

40%

60%

80%

100%

0 1-20 21-40 41-60 61-80 81+ WER

NonUnd
MisUnd
PartUnd
FullUnd

Figure 9. The distribution of understanding depending on the WER of the ASR result
(rounded up).

feedback utterances from the user (such as “mhm”) after the system’s display
of understanding, which did not have enough intensity to trigger the endpoint
detection. Another explanation is that the ASR was not allowed to deliver any
results while the system was talking. It was never shut-off, but if a speech end-
point was detected and a system utterance was playing, no result was delivered.
This was done to prevent some turn-taking problems that cannot yet be han-
dled. An example of this is U.7b in Table 6, where the utterance ends while S.9
is spoken.

6.2.3 Robustness and early error detection. To study the
robustness of PICKERING and GALATEA, the ASR results were divided in
WER intervals. The distribution of understanding for these spans is shown in
Figure 9.
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Table 8. The distribution of understanding for task-related complete recognised CAs of dif-
ferent forms, where WER = 0%.

Assertion Fragment “Ok” “Yes”/“No”

FULLUND 90.1% 88.6% 100.0% 98.2%
PARTUND 1.6% 8.4% 0.0% 0.0%
MISUND 2.6% 1.8% 0.0% 0.0%
NONUND 5.8% 1.2% 0.0% 1.8%

The figure shows that the introduction of ASR errors immediately decreases
the proportion of FULLUND by about 40%. Roughly half of this performance
drop consists of some deleted concepts (PARTUND) and half by inserted con-
cepts (MISUND). Interestingly, as the WER increases, the performance de-
grades gracefully up to a WER as high as 60%. Even with a WER above this,
the proportion of misunderstandings seems to be stable, indicating an accept-
able early error detection performance.

6.2.4 Ellipsis resolution. To find out how well GALATEA man-
ages to resolve ellipses, correctly recognised task-related complete CAs were
grouped based on their form. Table 8 shows the distribution of understanding
for some relevant forms. In this context, the form “fragment” includes adjec-
tives, nouns, nominal phrases, propositional phrases, etc.

As Table 8 shows, fragmentary utterances – where ellipsis resolution is
needed for full understanding – were almost as successful as assertions. For
fragments, there was a larger proportion of partial understandings. These are
utterances like U.13 in Table 6, which can be tricky to resolve correctly, but
may be used by the system to ask a request like S.14, resulting in a partial un-
derstanding. Acknowledgements and yes/no-utterances also need ellipsis reso-
lution. But, as the table shows, this is an easier task.

6.2.5 Fragmentary clarification. There was a total of 94 frag-
mentary clarification requests in the data. Of these, 68.1% concerned concepts
that were correctly understood by the system, and 31.9% concerned concepts
that were incorrect, i.e., the request followed a misunderstanding. The function
and type of the user CA following the request were used to group the user reac-
tions to the requests based on six different types. Table 9 shows the distribution
of these types.

Considering the large proportion of reactions that either ignore the request or
signal non-understanding, fragmentary clarification requests seem to be hard
for the users to understand. This is not very surprising, considering the fact
that this form of clarification is not very common in dialogue with computers,
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Table 9. Immediate user reaction to fragmentary clarification requests. The second column
shows the distribution for cases where the clarified concepts were correctly understood by the
system, and the third column cases where the clarified concepts were incorrect (i.e., after a
misunderstanding).

Reaction Correct Incorrect

“Yes”-answer 59.4% 0.0%
“No”-answer 3.1% 40.0%
A correction or elaboration, in the form of a fragment
or assertion, as an answer to the request.

10.9% 20.0%

An utterance that relates to the request, but does not
answer it.

4.7% 6.7%

A signal of non-understanding (such as “what?”). 9.4% 6.7%
The request is ignored. 12.5% 26.7%

and that no elaborated model for the prosody of these utterances was used.
Fragmentary clarification requests seem to be even harder to understand after
misunderstandings. This is of course due to the fact that such requests may not
make sense to the user in some situations. For example, the utterance “red?”
after “I want to go to a bus stop” may seem inadequate.

However, it is also possible that when users ignore a clarification request af-
ter a correct recognition, it should be interpreted as a “silent consent”. Purver
(2004) found that clarification requests in human-human dialogue are very
often not answered (in 17–39% of the cases). Thus, the assumption taken
here – that the clarification request must be confirmed for the concepts to be
considered as correct – may be implausible.

Of the reactions that imply that the request was understood correctly by the
user, it is interesting to note that far from all started with simple “yes” or “no”
answers. Especially after misunderstandings, the user often corrects the sys-
tem without starting with “no, ...”. For many reactions, it is not obvious if they
should be interpreted as answers to the preceding request, even if they relate
to it. This supports the previously discussed assumption that clarification re-
quests should not be treated as some sort of “sub-dialogue”, but rather as a
signal from the system that it lacks understanding, in the form of a request that
makes a fragmentary response possible to resolve. An interesting observation
is the existence of some “no” answers after clarification requests based on cor-
rect understanding. These are cases where the user changes her mind, possibly
because the system’s request is interpreted as if it was doubting the correctness
of the user’s description.

Table 10 shows the distribution of understanding of the user reactions. For
requests based on correct interpretations, the understanding of the responses
seems to be similar to that of CAs in general (compare with Table 7). However,
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Table 10. The system’s understanding of the user reactions to fragmentary clarification re-
quests. The second column shows the distribution for cases where the clarified concepts were
correctly understood by the system, and the third column cases where the clarified concepts
were incorrect (i.e., after a misunderstanding).

Understanding Correct Incorrect

FULLUND 67.2% 43.3%
PARTUND 3.1% 13.3%
MISUND 6.3% 6.7%
NONUND 15.6% 30.0%
NONHEAR 7.8% 6.7%

the performance is poorer for responses to requests based on misunderstand-
ings, reflecting the fact that these were more unpredictable.

6.2.6 Late error detection. The log files from the action man-
ager showed that there was a total of 78 cases where there was no place where
the user could be when matching the discourse model against the database – in-
dicating that a misunderstanding had occurred. In 45 of these cases, removing
concepts with low grounding status made it possible for the system to continue
positioning the user. This looks promising, but it does not tell us how many of
the correct or incorrect concepts actually were removed. Future work will fo-
cus on answering this question, as well as finding methods for improving late
error detection.

7. Conclusions and Future Work
In this chapter, the discourse modeller GALATEA has been presented. It models
the grounding status of concepts mentioned during the course of the discourse
by storing confidence scores for individual concepts, together with informa-
tion about when the concepts have been mentioned and by whom. It has been
shown how this information may be used by an action manager for display of
understanding, clarification requests, and late error detection, all on the con-
cept level. By integrating this with ellipsis and anaphora resolution, the system
may track how individual concepts may be grounded, depending on the surface
realisation of utterances.

An evaluation of the system showed that the performance of GALATEA and
the rest of the HIGGINS system looks promising, not only when utterances are
correctly recognised, but also when ASR errors are introduced. Further analy-
sis of the results will also take the subjects’ answers from the questionnaires
into account to draw conclusions on how the error handling techniques affect
user satisfaction.
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Fragmentary clarification requests may contribute to a more natural and ef-
ficient dialogue. However, there has previously not been much study on the
use of such utterances in spoken dialogue systems interacting with real users.
The results from the evaluation showed that users responded to fragmentary
clarification requests in a number of different ways. When the requests were
correctly understood by the users, the user responses to them seemed to be
correctly understood by the system. However, there seemed to be a lot of cases
where the requests were not understood by the users. This is partly due to
the limited prosodic model that was used. We are currently investigating how
prosodic features affect the pragmatic consequences of these fragmentary clar-
ification requests, and working to improve such a model (Skantze et al., 2006).
Further analysis of the results will also look at user responses after display of
understanding, and compare them to reactions to clarification requests.

This chapter has focused on how to model the way all utterances may pro-
vide evidence of understanding, or feedback, while simultaneously operating
on the domain level. Clarification requests, for example, are treated in the same
way as other requests and are not seen as special types of utterances. There is
also a limited set of domain-unrelated utterance-level feedback utterances, not
specifying concepts, such as “pardon?”, that have not been discussed here. For
a discussion of the use of such utterances in dialogue systems, see, for example,
Larsson (2003).

Currently, the thresholds used for different strategies and tasks have been
manually tuned. The notion of high and low grounding status is also very sim-
plistic. An important topic for future research is to investigate machine learning
techniques for choosing strategies, as well as for late error detection, similar
to the “belief updating” approach in Bohus and Rudnicky (2005). To improve
such classification, the grounding status could be enriched with more informa-
tion on how the concept was grounded, such as prosodic and lexical informa-
tion.

An important question is to what extent the techniques described in
this chapter may apply to other domains. GALATEA, as well as other
HIGGINS components, is currently being tested in CONNECTOR, a dia-
logue system acting as an automatic switchboard and secretary (Edlund and
Hjalmarsson, 2005). CONNECTOR is part of the EU-funded CHIL-project
(http://chil.server.de/) – a project investigating automatic tracking and support
of interactions in meeting rooms. The HIGGINS components have also been
used in the conversational training game DEAL (Hjalmarsson et al., 2007).
DEAL is a dialogue system for second language learners, where the user talks
to an embodied conversational agent in a flea market domain in order to train
conversational skills.
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Appendix

Figure 7.A.1. The complete entity list after turn U.10 in Table 1, before late error detection.
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Table 7.A.1. The same dialogue as in Table 1. The third column shows the interpretation of
the utterance after ellipsis resolution. Concepts that are grounded, i.e., displayed, in the same
turn are written in uppercase. The fourth column shows the error handling strategies that are
used.

Turn Transcription and
ASR result

After ellipsis resolution Error handling

S.1 Where do you want to go? Where do you want to go?
U.2 To an ATM.

TO AN ATM
I want to go to an ATM.

S.3 OK, OK,
an ATM. You want to go to an ATM. Separate display

of understanding
(ATM)

Can you describe where
you are now?

Can you describe where you are
now?

U.4 I have a large concrete
building on my left
I HAVE LARGE HELLO
CONCRETE BUILDING
ON MY LEFT

I have a LARGE CONCRETE

BUILDING on my LEFT

and a tree in front of me.
AND TREE ON RIGHT

I have a TREE on my RIGHT.

S.5 What colour is the concrete
building?

What COLOUR is the CON-
CRETE BUILDING?

Integrated display
of understanding
(CONCRETE,
BUILDING)

U.6 Red.
RED

The concrete building is RED.

S.7 OK, OK,
can you see a wooden
building in front of you?

can you see a WOODEN BUILD-
ING in FRONT of you?

U.8 No,
NO

I can not (NEGATIVE) see a
wooden building in front of me

but I have one on my right.
I HAVE ONE ON RIGHT

I have a wooden building on my
RIGHT.

S.9 On your right? Do you have a wooden building
on your RIGHT?

Clarify RIGHT

U.10 Yes.
YES

I do (POSITIVE) have a wooden
building on my right.

S.11 OK,
I think I know where you
are.
Walk a little bit forward
and take a left after the red
building.

OK,
I think I know where you are.
Walk a little bit FORWARD and
take a LEFT AFTER the RED

BUILDING.

Late error
detection of
RIGHT in U.4
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Abstract This work shows how a spoken dialogue system can be represented as a Partially
Observable Markov Decision Process (POMDP) with composite observations
consisting of discrete elements representing dialogue acts and continuous com-
ponents representing confidence scores. Using a testbed simulated dialogue
management problem and recently developed optimisation techniques, we
demonstrate that this continuous POMDP can outperform traditional approaches
in which confidence score is tracked discretely. Further, we present a method
for automatically improving handcrafted dialogue managers by incorporating
POMDP belief state monitoring, including confidence score information. Ex-
periments on the test-bed system show significant improvements for several
example handcrafted dialogue managers across a range of operating conditions.

Keywords: Spoken dialogue systems; partially observable Markov decision processes;
dialogue management; decision theory

191
L. Dybkjær and W. Minker (eds.), Recent Trends in Discourse and Dialogue, 191–217.
c© 2008 Springer Science + Business Media B.V.



192 RECENT TRENDS IN DISCOURSE AND DIALOGUE

1. Introduction
Dialogue management is a difficult problem for several reasons. First,speech
recognition errors are common, corrupting the evidence available to the ma-
chine about a user’s intentions. Second, users may change their intentions at
any point – as a result, the machine must decide whether conflicting evidence
has been introduced by a speech recognition error, or by a new user intention.
Finally, the machine must make trade-offs between the “cost” of gathering ad-
ditional information (increasing its certainty of the user’s goal, but prolonging
the conversation) and the “cost” of committing to an incorrect user goal. That
is, the system must perform planning to decide what sequence of actions to
take to best achieve the user’s goal despite having imperfect information about
that goal. For all these reasons, dialogue management can be cast as planning
under uncertainty.

In this context, making use of available information about speech recogni-
tion accuracy ought to improve the performance of a dialogue manager. One
key piece of information typically provided by the automatic speech recogni-
tion process is a confidence score, which provides a real-valued estimate of the
probability that the recognition hypothesis is correct. In a traditional spoken di-
alogue system, a confidence score is used to decide whether to accept or reject
a speech recognition hypothesis: if a hypothesis has a high confidence score,
it is accepted; otherwise it is rejected. More nuanced approaches create confi-
dence buckets which subcategorise the accept category into N “buckets” such
as low, medium and high. Confidence bucket information can then be incorpo-
rated into the dialogue state, and the dialogue manager can subsequently use
this information when choosing actions, for example when deciding whether
or not to confirm an element of the dialogue state.

This process is illustrated in the first two columns of Figure 1, which shows
a conversation with a spoken dialogue system in the pizza-ordering domain.
The first column indicates the words spoken by the user and the machine; the
bracketed text shows the (possibly erroneous) results from the speech recogni-
tion process, followed by the confidence score. The second column shows how
a typical spoken dialogue system might track dialogue state. In the last turn, a
speech recognition error is made, and it is unclear how this evidence should be
incorporated into the form in column 2 – should the new information replace
the old information, or should it be ignored?

In this chapter we consider a different model for dialogue management:
a partially observable Markov decision process (POMDP, pronounced “pom-
dp”). Rather than tracking one explicit dialogue state, a POMDP maintains a
probability distribution over all possible dialogue states, called a belief state.
As the dialogue progresses, the belief state is updated. This belief state up-
date provides a principled method for interpreting confidence score: intuitively,
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S: How can I help you?
U: A small pepperoni pizza
     [a small pepperoni pizza]

Confidence score: 0.83

Sml Med Lrg

Sml Med Lrg

Sml Med Lrg

b

b

size: {
value: <empty>
confidence: <empty>

}

size: {
value: small
confidence: high

}

S: And what type of crust?
U: Uh just normal
     [large normal]

Confidence score: 0.35

b
order: {
size: large [?]
confidence: low [?]

}

Prior to start of dialogue

System / User / ASR POMDP belief stateTraditional dialogue state

Figure 1. Example conversation with a spoken dialogue system in the pizza-ordering domain.
The first column shows the words spoken by the user and the machine. The text in brackets
shows the results from the speech recognition process, and the following line shows the resulting
confidence score provided by the speech recognition engine. The second column shows how a
typical dialogue manager might track a dialogue state, including a “confidence bucket” for the
“size” field. The third column shows how the “POMDP belief state” would track the same
conversation. Note how the traditional method struggles to account for the conflicting evidence
in the last turn, whereas in the POMDP, the confidence score simply scales the magnitude of
the update.

the confidence score simply scales the magnitude of the update. This process
is illustrated in the third column of Figure 1 – note how the (first) higher-
confidence recognition causes a large movement of belief mass, whereas the
(second) lower-confidence recognition causes a smaller movement of belief
mass.

The goal of this chapter is to explain this process in detail and show it repre-
sents significant gains over a traditional “confidence bucket” approach through
two central contributions. First, we show how a confidence score can be ac-
counted for exactly in a POMDP-based dialogue manager by treating confi-
dence score as a continuous observation. Using a test-bed simulated dialogue
management problem, we show that recent optimisation techniques produce
policies which outperform traditional MDP-based approaches across a range
of operating conditions.

Second, we show how a handcrafted dialogue manager can be improved au-
tomatically by treating it as a POMDP policy. We then show how a confidence
score metric can be easily included in this improvement process. We illus-
trate the method by creating three handcrafted controllers for the test-bed dia-
logue manager, and show that our technique improves the performance of each



194 RECENT TRENDS IN DISCOURSE AND DIALOGUE

controller significantly across a variety of operating conditions. This chapter is
organised as follows. Section 2 briefly reviews background on POMDPs. Sec-
tion 3 casts the dialogue management problem as a POMDP, showing how
to incorporate a confidence score, and reviewing previous work. Section 4
outlines our test-bed dialogue management simulation, and compares policies
produced by our method to a baseline on the test-bed problem which uses the
traditional “confidence bucket” approach. Section 5 shows how a handcrafted
policy can be improved using confidence score, and provides an illustration,
again using the test-bed problem. Section 6 briefly concludes.

2. Overview of POMDPs
Formally, a POMDP is defined as a tuple {S, Am, T, R, O, Z}, where S is a
set of states, Am is a set of actions that an agent may take,1 T defines a tran-
sition probability p(s′|s, am), R defines the expected (immediate, real-valued)
reward r(s, am), O is a set of observations, and Z defines an observation prob-
ability, p(o′|s′, am). In this chapter, we will consider POMDPs with discrete
S and continuous O. The POMDP operates as follows. At each time-step, the
machine is in some unobserved state s. The machine selects an action am, re-
ceives a reward r, and transitions to (unobserved) state s′ , where s′ depends
only on s and am. The machine receives an observation o′ which is dependent
on s′ and am. Although the observation gives the system some evidence about
the current state s, s is not known exactly, so we maintain a distribution over
states called a “belief state”, b. We write b(s) to indicate the probability of
being in a particular state s. At each time-step, we update b as follows:

b′(s′) = p(s′|o′, am, b) (8.1)

=
p(o′|s′, am, b)p(s′|am, b)

p(o′|am, b)

=
p(o′|s′, am)

∑
s∈S p(s′|am, b, s)p(s|am, b)
p(o′|am, b)

=
p(o′|s′, am)

∑
s∈S p(s′|am, s)b(s)

p(o′|am, b)

The numerator consists of the observation function, transition matrix, and
current belief state. The denominator is independent of s′, and can be regarded
as a normalisation factor; hence:

b′(s′) = k · p(o′|s′, am)
∑
s∈S

p(s′|am, s)b(s) (8.2)

1In the literature, the system action set is often written as an un-subscripted A. In this work, we will model
both machine and user actions, and have chosen to write the machine action set as Am for clarity.



Partially Observable Markov Decision Processes 195

We refer to maintaining the value of b at each time-step as “belief monitor-
ing”. The immediate reward is computed as the expected reward over belief
states:

ρ(b, am) =
∑
s∈S

b(s)r(s, am) (8.3)

A POMDP policy specifies which action should be taken given a belief
state.2 The goal of policy learning is then to find a policy which maximises
the cumulative, infinite-horizon, discounted reward called the return:

∞∑
t=0

λtρ(bt, amt) =
∞∑

t=0

λt
∞∑

t=0

r(s, amt) (8.4)

where bt indicates the distribution over all states at time t, bt(s) indicates the
probability of being in state s at time-step t, and λ is a geometric discount fac-
tor, 0 < λ < 1. Because belief space is real-valued, an optimal infinite-horizon
policy may consist of an arbitrary partitioning of S-dimensional space in which
each partition maps to an action. In fact, the size of the policy space grows
exponentially with the size of the (discrete) observation set and doubly expo-
nentially with the distance (in time steps) from the horizon (Kaelbling et al.,
1998). A continuous observation space compounds this further. Nevertheless,
real-world problems often possess small policies of high quality.

In this work, we make use of approximate solution methods. The first, a
point-based value iteration algorithm called Perseus (Spaan and Vlassis, 2004),
operates on problems with discrete observation sets and is capable of rapidly
finding good yet compact policies (when they exist). Perseus heuristically se-
lects a small set of representative belief points, and then iteratively applies
value updates to just those points, instead of all of the belief space, achieving
a significant speed-up. Perseus has been tested on a range of problems, and
found to outperform a variety of other methods, including grid-based methods
(Spaan and Vlassis, 2004).

Perseus (like all value-iteration optimisation algorithms) produces a value
function represented as a set of N vectors each of dimensionality |S|. We write
vn(s) to indicate the sth component of the nth vector. Each vector represents
the value, at all points in the belief space, of executing some “policy tree”
which starts with an action associated with that vector. We write π̂(n) ∈ A to
indicate the action associated with the nth vector. If we assume that the policy
trees have an infinite horizon, then we can express the optimal policy at all
time-steps as:

π(b) = π̂(argmax
n

|S|∑
s=1

vn(s)b(s)) (8.5)

2We will assume the planning horizon for a policy is infinite unless otherwise stated.
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In simple terms, a value function provides both a partitioning of the belief
space (where each region corresponds to an action which is optimal in that re-
gion), as well as the expected return of taking that action. In this chapter we
will also make use of an extension to Perseus proposed by Hoey and Poupart
(2005) which operates on POMDPs with continuous or very large discrete ob-
servation sets. This method exploits the fact that different observations may
lead to identical courses of action to discretise continuous observations with-
out any loss of information. In the context of dialogue management with a
continuous confidence score, it implicitly and adaptively finds optimal loss-
less buckets of confidence that are equivalent to using the original continuous
confidence score.3

3. Casting Dialogue Management as a POMDP
Williams et al. (2005) cast a spoken dialogue system as a factored POMDP, and
this model will be used as the general framework for the techniques presented
here. In this model, the POMDP state variable s ∈ S is separated into three
components: (1) the user’s goal, su ∈ Su ; (2) the user’s action, au ∈ Au; and
(3) the history of the dialogue, sd ∈ Sd. The POMDP state s is given by the
tuple (su, au, sd). We note that, from the machine’s perspective, all of these
components are unobservable.

The user’s goal, su, gives the current goal or intention of the user. Examples
of a complete user goal include a complete travel itinerary, a desired appoint-
ment to make in a calendar, or a product the user would like to purchase. The
user’s goal persists over the course of the dialogue, and in general it will re-
main static although it is possible for it to change (e.g., if the machine indicates
that there are no direct flights, the user’s goal might change to include indirect
flights).

The user’s action, au, gives the user’s most recent actual action. Examples
of user actions include specifying a place the user would like to travel to, re-
sponding to a yes/no question, or a “null” response indicating the user took no
action. User actions may convey a portion of the user’s goal (such as requesting
a flight “to London”), or may serve a communicative role (such as answering
a yes/no question).

The history of the dialogue sd indicates any relevant dialogue history in-
formation. For example, sd might indicate that a particular slot has not yet
been stated, has been stated but not grounded, or has been grounded. sd ena-
bles a policy to make decisions about the appropriateness of behaviours in a
dialogue – for example, if there are ungrounded items, a dialogue designer
might wish to penalise asking an open question (vs grounding an item).

3The actual implementation used in this chapter approximates some integrals by Monte Carlo sampling,
which means that the confidence buckets are not exactly lossless.
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Note that we do not include a state component for confidence associated
with a particular user goal. The concept of confidence is naturally captured by
the distribution of probability mass assigned to a particular user goal in the
belief state.

The POMDP action am ∈ Am is the action the machine takes in the dia-
logue. For example, machine actions might include greeting the user, asking
the user where he or she wants to go “to”, or confirming that the user wants to
leave “from” a specific place.

To factor the model, we decompose the POMDP transition function as
follows:

p(s′|s, am) = p(s′u, s′d, a
′
u|su, sd, au, am) (8.6)

= p(s′u|su, sd, au, am) ·
p(a′u|s′u, su, sd, au, am) ·
p(s′d|a′u, s′u, su, sd, au, am)

We then assume conditional independence as follows. The first term – which
we call the user goal model – indicates how the user’s goal changes (or does
not change) at each time step. We assume the user’s goal at a time step depends
only on the previous goal and the machine’s action:

p(s′u|su, sd, au, am) = p(s′u|su, am) (8.7)

The second term – which we call the user action model – indicates what
actions the user is likely to take at each time step. We assume the user’s action
depends on his/her (current) goal and the preceding machine action:

p(a′u|s′u, su, sd, au, am) = p(a′u|s′u, am) (8.8)

The third term – which we call the dialogue history model – indicates how
the user and machine actions affect the dialogue history. The current history of
the dialogue depends on the previous history combined with the most recent
user and machine actions:

p(s′d|a′u, s′u, su, sd, au, am) = p(s′d|a′u, s′u, am) (8.9)

In sum, our transition function is given by:

p(s′|s, am) = p(s′u|su, am) · p(a′u|s′u, am) · p(s′d|a′u, sd, am) (8.10)

This factored representation reduces the number of parameters required for
the transition function, and allows groups of parameters to be estimated sep-
arately. For example, we could estimate the user action model from a corpus
by counting user dialogue acts given a machine dialogue act and a user goal,
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or use a “generic” distribution and adapt it to a particular problem once data be-
comes available.4 We could then separately specify the dialogue history model
using a handcrafted function such as “Information State” update rules as in, for
example, Larsson and Traum (2000).

The POMDP observation o is decomposed into two elements: the speech
recognition hypothesis ãu ∈ Au and the confidence score c ∈ R. The observa-
tion function is given by:

p(o′|s′, am) = p(ã′u, c′|s′u, s′d, a
′
u, am) (8.11)

The observation function accounts for the corruption introduced by the
speech recognition engine, so we assume the observation depends only on
the action taken by the user, and by the grammar g selected by the dialogue
manager:

p(ã′u, c′|s′u, s′d, a
′
u, am) = p(ã′u, c′|a′u, g) (8.12)

The observation function can be estimated from a corpus or derived analyt-
ically using a phonetic confusion matrix, language model, etc. This distribu-
tion expresses the probability density of observing recognition hypothesis ã′u
with confidence score c when the user actually took action au and recognition
grammar g was activated. As such, the observation function can be viewed as
a model of the errors introduced by the speech recognition channel.

Together equations 8.10 and 8.12 represent a statistical model of a dialogue.
The transition function allows future behaviour to be predicted and the obser-
vation function provides the means for inferring a distribution over hidden user
states from observations. The factoring is general-purpose in that the user goal
component su allows the user to have a hidden, persistent state which emits
unobserved actions au that are corrupted into observations ãu by the speech re-
cognition process. Further, the dialogue history component sd enables actions
to be selected with an awareness of dialogue history. Figure 2 summarizes the
factored model, depicted as an influence diagram.

The reward function is not specified explicitly in this proposal since it
depends on the design objectives of the target system. We note that the re-
ward measure could contain incentives for dialogue speed (by using a per-turn
penalty), appropriateness (through rewards conditioned on dialogue state), and
successful task completion (through rewards conditioned on the user’s goal).
Weights between these incentives could be estimated through formalisms like
PARADISE (Walker et al., 2000), and then adapted to the needs of a partic-
ular domain – for example, accuracy in performing a financial transaction is

4To appropriately cover all of the conditions, the corpus would need to include variability in the strategy
employed by the machine – e.g., using a Wizard-of-Oz framework with a simulated ASR channel (Stuttle
et al., 2004).
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Figure 2. Influence diagram for the factored model. The dotted box indicates the composite
state s is comprised of three components, su, sd, and au. Shading indicates a component is
unobservable. Arcs into circular chance nodes and diamond-shaped utility nodes show influ-
ence, whereas arcs into square decision nodes are informational, as in Jensen (2001, p. 140).
The arc from the dotted box to am indicates that am is chosen based on the belief state – i.e., a
distribution over su, sd, and au.

arguably more important than accuracy when obtaining weather information.
As described in the previous section, actions are selected based on the belief
state to maximise cumulative long-term reward.

Finally, we update the belief state at each time step by substituting equations
8.10 and 8.12 into 8.2 and simplifying:

b′(s′u, s′d, a
′
u) = k · p(ã′u, c′|a′u, g)p(a′u|s′u, am) ·

∑
su∈Su

p(s′u|su, am) · (8.13)

∑
su∈Su

p(s′u|su, am) ·
∑

sd∈Sd

p(s′d|a′u, sd, am) ·
∑

au∈Au

b(su, sd, au)

The belief monitoring update equation 8.13 exemplifies the key difference
between conventional approaches to dialogue management and the POMDP
approach. In conventional approaches, a single state vector is maintained which
encodes the system’s “best guess” about all of the information needed to de-
termine the next system action. For example, a state vector might include a
record of all of the informational items supplied by the user, their grounding
state, dialogue history, etc. Both the user’s input and the subsequent system
output are dependent on this state vector, but since there can be errors in this
state vector, the system will often make mistakes and must then enter some
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form of recovery procedure. This is essentially a depth-first greedy search with
backtracking.

In the POMDP approach, all possible states are maintained rather than
the single most likely state. Each user input (i.e., the observation) is then in-
terpreted in the context of each possible new state via the observation term
p(ã′u, c′|a′u, g). If the new observation is likely given s′, then the subsequent
belief in s′ will be high and vice versa. The new state s′ itself will only be
plausible if there is a non-zero likelihood of making a transition from some
previous state s to the new state, and since the previous state is unknown, all
possible transitions are considered, weighted by the beliefs at the previous
turn. In search terms, this is breadth-first search. It has the advantage over
depth-first that both inputs and outputs can be determined from a knowledge
of all of the alternative interpretations.

In practice the observation function p(ã′u, c′|a′u, g) will be difficult to es-
timate directly from data, so we will decompose the distribution by assuming
that confidence scores are drawn from just two distributions – one for “correct”
recognitions and another for “incorrect” recognitions:

p(ã′u, c′|a′u, g) ≈
{

pcorrect(c′) · p(ã′u|a′u, g), if ã′u = a′u
pincorrect(c′) · p(ã′u|a′u, g) if ã′u �= a′u

(8.14)

where p(ã′u|a′u, g) expresses the confusion matrix – i.e., probability of observ-
ing hypothesis ã′u given that the user took action a′u and grammar g was active;
and pcorrect(c′) and pincorrect(c′) express the probability density function of
the confidence scores associated with correct and incorrect recognitions. To
perform policy improvement on this POMDP we have two options. First, we
can use an optimisation method which accounts for the continuous observa-
tions, such as that by Hoey and Poupart (2005). This method creates a policy
which takes the expected additional information in the confidence score into
account, and we call this the continuous-POMDP solution. Alternatively, there
is still benefit to using the confidence score information for belief state mon-
itoring (as in 8.13) even if it was not used during policy optimisation. Thus a
second option for performing policy improvement is to marginalise the confi-
dence score, i.e.:

p(ã′u|a′u, g) =
∫

c′
p(ã′u, c′|a′u, g) (8.15)

and to then optimise the resulting POMDP using a technique such as Perseus.
At runtime, the full observation function p(ã′u, c|a′u, g) is used for belief state
monitoring. We call this the discrete-POMDP solution.

Stated alternatively, the continuous-POMDP technique uses infinitely many
confidence buckets during planning and belief monitoring, whereas the
discrete-POMDP technique uses no confidence information during planning,
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but infinitely many confidence buckets during belief monitoring. By contrast,
MDP methods (in the literature, and our baseline, presented below) use a
handful of confidence buckets for planning, but do not perform any belief
monitoring.5

In the literature, casting dialogue management as planning under uncertainty
has been attempted using both (fully observable) Markov decision processes
(MDPs) and POMDPs. The application of MDPs was first explored by Levin
and Pieraccini (1997). Levin et al. (2000) provide a formal treatment of how
an MDP may be applied to dialogue management, and Singh et al. (2002)
show application to real systems. However, MDPs assume the current state of
the environment (i.e., the conversation) is known exactly, and thus they do not
naturally capture the uncertainty introduced by the speech recognition channel.

Partially observable MDPs (POMDPs) extend MDPs by providing a princi-
pled account of noisy observations. Roy et al. (2000) compare an MDP and a
POMDP version of the same spoken dialogue system, and find that the POMDP
version gains more reward per unit time than the MDP version. Further, the au-
thors show a trend that as speech recognition accuracy degrades, the margin by
which the POMDP outperforms the MDP increases. Zhang et al. (2001) ex-
tend this work in several ways. First, the authors add “hidden” system states
to account for various types of dialogue trouble, such as different sources of
speech recognition errors. Second, the authors use Bayesian networks to com-
bine observations from a variety of sources (including confidence score). The
authors again show that the POMDP-based methods outperform MDP-based
methods. In all previous work (using both MDPs and POMDPs), confidence
score has been incorporated by dividing the confidence score metric into dis-
crete confidence “buckets”. For example, in the MDP literature, Singh et al.
(2002) track the confidence bucket for each field as “high, medium, or low”
confidence. The authors do not address how to determine an “optimal” num-
ber of confidence buckets, nor how to determine the “optimal” thresholds of
the confidence score metric that divide each bucket. In the POMDP litera-
ture, Zhang et al. (2001) use Bayesian networks to combine information from
many continuous and discrete sources, including confidence score, to com-
pute probabilities for two metrics called “Channel Status” and “Signal Status”.
Thresholds are then applied to these probabilities to form discrete, binary ob-
servations for the POMDP. Again, it is not clear how to set these thresholds
to maximise POMDP return. Looking outside the (PO)MDP framework, Paek

5In theory, one could create an MDP with continuous components in its state space, and use these com-
ponents to track confidence score. While this avoids “binning” the confidence score, it does not aggregate
evidence over time: in order to do this in an MDP, state components for “most recent confidence score”,
“2nd more recent confidence score”, etc. would be required, causing rapid growth in the state space. By con-
trast, a POMDP frames a sequence of confidence scores as observations and naturally accumulates evidence
over time through belief monitoring.
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and Horvitz (2003) suggest using an influence diagram to model user and dia-
logue state, and selecting actions based on “Maximum Expected [immediate]
Utility”. This proposal can be viewed as a POMDP with continuous observa-
tions that greedily selects actions – i.e., which selects actions based only on
immediate reward. By choosing appropriate utilities, the authors show how lo-
cal grounding actions can be automatically selected in a principled manner.
In this work, we are interested in POMDPs as they enable planning over any
horizon.

4. Comparison with Traditional Approach
To assess the benefits of the POMDP approach versus traditional “confidence
bucket” approaches, we created a test-bed dialogue management problem in
the travel domain. This test-bed problem enables direct comparisons between
dialogue managers produced by casting the problem as a POMDP with con-
tinuous observations, and dialogue managers produced by adding “confidence
buckets” and casting the problem as an MDP. In both the POMDP and MDP,
dialogue managers are produced automatically. Assuming that these represent
optimal solutions, then this comparison gives a quantitative indication of the
value of the POMDP approach.

4.1 POMDP Test-Bed Dialogue Management
Problem

In the test-bed dialogue management problem, the user is trying to buy a ticket
to travel from one city to another city. The machine asks the user a series of
questions, and then “submits” a ticket purchase request, ending the dialogue.
The machine may also choose to “fail”. In the test-bed problem, there are three
cities, {a, b, c}. The machine has 16 actions available, including greet, ask-
from/ask-to, conf-to-x/conf-from-x, submit-x-y, and fail, where x, y ∈ {a, b, c}.
As above, the POMDP state is given by the tuple (su, au, sd). The user’s goal
su ∈ Su specifies the user’s desired itinerary. There are a total of six user goals,
given by su = (x, y) : x, y ∈ {a, b, c}, x �= y. The dialogue state sd contains
three components. Two of these indicate (from the user’s perspective) whether
the from place and to place have not been specified (n), are unconfirmed (u),
or are confirmed (c). A third component z specifies whether the current turn is
the first turn (1) or not (0). There are a total of 18 values of sd, given by:

sd = (xd, yd, z); xd, yd ∈ {n, u, c}; z ∈ 1, 0 (8.16)

The user’s action au ∈ Au and the observation ãu ∈ Au are drawn from the
set x, from-x, to-x, from-x-to-y, yes, no, and null, where x, y ∈ {a, b, c}, x �= y.
These state components yield a total of 1,944 states, to which we add one
additional, absorbing end state. When the machine takes the fail action or a
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submit-x-y action, control transitions to this end state, and the dialogue ends.
The initial (prior) probability of the user’s goal is distributed uniformly over
the six user goals. In the test-bed problem the user has a fixed goal for the
duration of the dialogue, and we define the user goal model accordingly.

We define the user action model p(a′u|s′u, am) to include a variable set of
responses – for example: the user may respond to ask-to/ask-from with x,
to-x/from-x, or from-x-to-y; the user may respond to greet with to-y, from-x, or
from-x-to-y; the user may respond to confirm-to-x/confirm-from-x with yes/no,
x, or to/from-x; and at any point the user might not respond (i.e., respond with
null). The probabilities in the user action model were chosen such that the user
usually provides cooperative but varied responses, and sometimes doesn’t re-
spond at all. The probabilities were handcrafted, selected based on experience
performing usability testing with slot-filling dialogue systems.

We define the dialogue model p(s′d|a′u, sd, am) to deterministically imple-
ment the notions of dialogue state above – i.e., a field which has not been
referenced by the user takes the value n; a field which has been referenced by
the user exactly once takes the value u; and a field which has been referenced
by the user more than once takes the value c. For example, at the beginning
of the dialogue, the dialogue state sd is (n, n, 1). If the user were to say “I’d
like to go to b” in his/her first utterance, the resulting dialogue state would be
(n, u, 0). If the system were to reply “To b – is that right?”, and the user replied
“Yes, from a to b”, then the resulting dialogue state would be (u, c, 0). We de-
fine the confusion matrix p(ã′u|a′u, g) to encode the probability of making a
speech recognition error to be perr. Further, we assume that one recognition
grammar is always used:

p(ã′u, c′|a′u, g) = p(ã′u, c′|a′u)

=
{

pcorrect(c′) · (1 − perr) if ãu = au

pincorrect(c′) perr

|Au|−1 if ãu �= au (8.17)

Below we will vary perr to explore the effects of speech recognition errors.
Past work has found the distribution of confidence scores to be exponen-

tial (Pietquin, 2004), and here we define the confidence score probability
density functions pcorrect(c′) and pincorrect(c′) to be exponential probability
density functions normalised to the region [0,1], i.e.:

pcorrect(c) =

{
acorrecte

c·acorrect

eacorrect − 1 , acorrect �= 0
1, acorrect = 0

pincorrect(c) =

{
aincorrecte

(1−c)·aincorrect

eaincorrect − 1 , aincorrect �= 0
1, aincorrect = 0

(8.18)
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Table 1. Minimum classification error rate possible for various concept error rates (Perr) and
levels of confidence score informativeness (ax).

Concept error rate (Perr)

ax 0.10 (%) 0.30 (%) 0.50 (%)

0 10 30 50
1 10 30 38
2 9 23 27
3 9 16 18
4 6 11 12
5 4 7 8
∞ 0 0 0

where acorrect and aincorrect are constants defined on (−∞,∞). We note that
as ax approaches positive or negative infinity, px(c) becomes deterministic and
conveys complete information; when ax = 0, px(c) is a uniform density and
conveys no information. Since we expect the confidence value for correct re-
cognition hypotheses to tend to 1, and for incorrect recognition hypotheses to
tend to 0, we would expect ax > 0. To illustrate the meaning of acorrect and
aincorrect, a small classification task was created in which a confidence score is
used as a decision variable to classify ãu as either correct or incorrect. Various
concept error rates (values of perr) and ax were considered and for each pair of
values, the confidence threshold which minimised classification error rate was
used. Table 1 shows the results. When ax = 0, all hypotheses are classified as
correct and the classification error rate is the same as perr. As ax is increased,
the classification error rate decreases. Intuitively, Table 1 shows the minimum
possible classification error rate achievable with a given ax, and comparing this
with the prior error rate perr gives an indication of the informativeness of ax.

The reward measure for the test-bed dialogue problem includes components
for both task completion and dialogue “appropriateness”, including: a reward
of −3 for confirming a field before it has been referenced by the user; a re-
ward of −5 for taking the fail action; a reward of +10 or −10 for taking the
submit-x-y action when the user’s goal is (x,y) or not, respectively; and a re-
ward of −1 otherwise. The reward measure reflects the intuition that behaving
inappropriately or even abandoning a hopeless conversation early are both less
severe than getting the user’s goal wrong. The per-turn penalty of −1 expresses
the intuition that, all else being equal, short dialogues are better than long di-
alogues. The reward measure also assigned −100 for taking the greet action
when not in the first turn of the dialogue. This portion of the reward function
effectively expresses a design decision: the greet action may only be taken in
the first turn. A discount of γ = 0.95 was used for all experiments.

Both the Perseus and the Hoey–Poupart algorithms required parameters for
the number of belief points and number of iterations. Through experimentation,
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we found that 500 belief points and 30 iterations attained asymptotic perfor-
mance for all values of Perr. In addition, the Hoey–Poupart algorithm required
a parameter specifying the number of observations to sample at each belief
point. Through experimentation, we found that 300 samples produced accept-
able results and reasonable running times.

4.2 MDP Baseline
To test whether the method for incorporating confidence score outperforms
current methods, an MDP was constructed to assess performance of a model
which does not track multiple dialogue states, and which does not make use
of an explicit user model. The MDP was patterned on systems in the literature
(Pietquin, 2004). The MDP state contains components for each field which re-
flect whether, from the standpoint of the machine, (a) a value has not been ob-
served, (b) a value has been observed but not confirmed, or (c) a value has been
confirmed. The MDP state also tracks which confidence bucket was observed
for each field, as well as for the confirmation. Finally, two additional states –
dialogue-start and dialogue-end – are included in the MDP state space.

The “confidence bucket” is determined by dividing the confidence score into
M buckets. Ideally the confidence score bucket sizes would be selected so that
they maximise average return. However, it is not obvious how to perform this
selection – indeed, this is one of the weaknesses of the “confidence bucket”
method. Instead, a variety of techniques for setting the confidence score thresh-
old were explored. It was found that dividing the probability mass of the con-
fidence score c evenly between buckets produced the largest average returns
among the techniques explored.6 That is, we define

cThresh0 = 0 < cThresh1 < · · · < cThreshM−1 < cThreshM = 1
(8.19)

and then find the values of cThreshm such that:∫ cThreshm

cThreshm−1

p(c)dc =
∫ cThreshm+1

cThreshm

p(c)dc, m ∈ 1, 2, · · · , M − 1 (8.20)

where p(c) is the prior probability of a confidence score. We find this prior for
our test-bed problem as follows. We first find the distribution p(c|au) as:

p(c|au) =
∑
h∈A

p(h, c|au) (8.21)

= pcorrect(c|au)(1 − perr) + pincorrect(c|au)(perr) (8.22)

6The other techniques included dividing the range of confidence scores equally (e.g., for two buckets, using
a threshold of 0.5), and dividing the range of error rates equally (e.g., for two buckets, setting a threshold
such that p (observation is correct | confidence score) = 0.5).
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In the MDP context, we assume the confidence score buckets are formed
without access to a prior p(au). From this assumption, we find:

p(c) = pcorrect(c)(1 − perr) + pincorrect(c)(perr) (8.23)

from which the values of cThreshm can be derived.
Because the confidence bucket for each field (including its value and its

confirmation) is tracked in the MDP state, the size of the MDP state space
grows with the number of confidence buckets. For M = 2 confidence buckets,
the resulting MDP called MDP-2 has 51 states.7

Given the current MDP state, the MDP policy selects an MDP action, and
the MDP state estimator then maps the MDP action back to a POMDP ac-
tion. Because the MDP learns through experience with a simulated environ-
ment, an on-line learning technique, (Watkins, 1989) Q-learning, was used to
train the MDP baseline. A variety of learning parameters were explored, and
the best-performing parameter set was selected: initial Q values set to 0, ex-
ploration parameter ε = 0.2, and the learning rate α set to 1/k (where k is
the number of visits to the Q(s, a) being updated). MDP-2 was trained with
approximately 125,000 dialogue turns. To evaluate the resulting MDP policy,
10,000 dialogues were simulated using the learned policy.

4.3 Results
Figure 3 shows the average returns for the continuous-POMDP, discrete-
POMDP, and MDP-2 solutions vs perr ranging from 0.00 to 0.65 for acorrect =
aincorrect = a = 1. (At each data point, an error rate perr was set, and errors
and confidence scores were generated synthetically according to equations 8.16
and 8.18.). Figure 3 also shows curves for noconf-POMDP a POMDP which
ignores confidence score information and MDP, an MDP which ignores confi-
dence score information (i.e., an MDP with just one confidence score bucket).
The error bars show the 95% confidence interval for return assuming a normal
distribution. Note that return decreases consistently as perr increases for all so-
lution methods, but the POMDP solutions attain larger returns than the MDP
method at all values of perr.8 From this plot it can be seen that the addition of
confidence score information improves both the POMDP and MDP solutions.
This plot shows that, at a = 1, the addition of confidence score information has
a large improvement in performance for the MDP, and a modest but significant
improvement on the POMDP.

As the informativeness of the confidence score increases, it would be ex-
pected that the performance of both the MDP and POMDP would continue

7For reference, M = 1 produces an MDP with 11 states, and M = 3 produces an MDP with 171 states.
8The MDP-3 system was also created but we were unable to obtain better performance from it than we did
from the MDP-2 system.
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Figure 3. Average return for continuous-POMDP, discrete-POMDP, noconf-POMDP, MDP-2
and MDP methods for a = 1.

to improve. This is confirmed in Figures 4, 5, and 6 which show average re-
turns for the discrete-POMDP and continuous-POMDP methods and MDP-2
method vs. a for perr = 0.3, 0.4, and 0.5, respectively. The error bars show
the 95% confidence interval for return assuming a normal distribution. In these
figures, we again define acorrect = aincorrect = a. The POMDP methods
outperform the baseline MDP method consistently. Note that increasing a in-
creases average return for all methods, and that the greatest improvements are
for perr = 0.5 – i.e., the information in the confidence score has more im-
pact as speech recognition accuracy degrades. These figures also provide a
quantitative illustration of the benefit of belief monitoring vs the benefit of the
confidence score information. For example, in Figure 6 (in which perr = 0.5),
at a = 0, the POMDP achieves an average of 0.7 units of reward/dialogue
whereas the MDP achieves an average of −3.1 units of reward/dialogue. In
other words, ignoring confidence score altogether, the belief monitoring pro-
vided by the POMDP results in an increase from −3.1 to 0.7. The addition of
a very informative confidence score (i.e., a = 5) to the POMDP results in an
increase from 0.7 units of reward/dialogue to 3.2 units of reward/dialogue.

In Figures 3 through 6, the discrete-POMDP and continuous-POMDP
methods performed similarly.9 In this task, use of the confidence score during

9Additional experiments were performed (not shown here) which performed POMDP optimisation with 2,
4, and 8 “buckets” and continuous belief monitoring during evaluation, and these produced very similar
results.
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planning does not improve performance of the POMDP. This could be due to
the relatively short horizon in the test-bed problem, as most of the dialogues
spanned only a handful of turns. We intend to explore this issue with larger
dialogue management problems in future work.
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5. Improving Handcrafted Policies
In the previous section, a designer specified a reward function, and actions
were selected to maximise reward using automated planning. In traditional ap-
proaches to dialogue management, the designer specifies actions directly, a
process often called handcrafting.10

Automated planning is appealing because adding confidence score informa-
tion to the dialogue state space increases its size dramatically, complicating
the work of a human designer. This section presents an alternative approach in
which a human designer produces a handcrafted dialogue manager which does
not include confidence score information. Rather, the spoken dialogue system
is viewed as a POMDP, belief monitoring (which takes confidence score into
account) is performed, and the handcrafted controller is executed in conjunc-
tion with the belief state. Concretely, the handcrafted policy is evaluated by
constructing its value function, and is then executed in the style of the discrete-
POMDP above.

Intuitively, a policy specifies what action to take in a given situation. In the
previous section, we relied on the representation of a POMDP policy produced
by value iteration – i.e., a value function, represented as a set of N vectors
each of dimensionality |S|. We write vn(s) to indicate the sth component of
the nth vector.

10In both POMDP and traditional approaches, the designer creates a dialogue model; the focus here is how
actions are selected given a dialogue model.
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A second way of representing a POMDP policy is as a “policy graph” – a
finite state controller consisting of N nodes and some number of directed arcs.
Each controller node is assigned a POMDP action, and we will again write
π̂(n) to indicate the action associated with the nth node. Each arc is labelled
with a POMDP observation, such that all controller nodes have exactly one
outward arc for each observation. l(n, o) denotes the successor node for node
n and observation o. A policy graph is a general and common way of rep-
resenting handcrafted dialogue management policies (Pieracinni and Huerta,
2005). More complex handcrafted policies – for example, those created with
rules – can usually be compiled into a (possibly very large) policy graph. That
said, a policy graph does not make the expected return associated with each
controller node explicit, but as pointed out by Hansen (1998), we can find the
expected return associated with each controller node by solving this system of
linear equations in v:

vn(s) = r(s, π̂(n)) + γ
∑
s′∈S

∑
o∈O

p(s′|s, π̂(n))p(o|s′, π̂(n))vl(n,o)(s
′) (8.24)

Solving this set of linear equations yields a set of vectors – one vector v(s)
for each controller node, vn(s). To find the expected value of starting the con-
troller in node n and belief state b we compute:

|S|∑
s=1

vn(s)b(s) (8.25)

To improve the performance of the controller, we use vn(s) at run-time, as
follows. At the beginning of the dialogue, we find the node with the highest
expected return for b0 and execute its action. Throughout the dialogue, we per-
form belief state monitoring – i.e., we maintain the current belief state at each
time-step as given in equation 8.13. At each time-step, rather than following
the policy specified by the finite state controller, we re-evaluate which node
has the highest expected return for the current b. We then take the action spec-
ified by that node. Because the node-value function and belief state are exact,
this style of execution is guaranteed to perform at least as well as the origi-
nal handcrafted controller. Note that, in this style of execution, transitions may
occur which are not arcs in the handcrafted policy.

This style of execution is distinct from policy iteration, in which the nodes
and links of the controller are changed and the controller is re-evaluated (using
e.g., equation 8.24) to iteratively improve the controller’s expected return. We
do not explore policy iteration in this chapter; however, we note that a hand-
crafted controller could be used to bootstrap a policy iteration process. Since
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a finite state controller is more intuitive for a (human) designer to understand,
we intend to explore policy iteration in future work.

Three handcrafted policies were created for the test-bed dialogue manage-
ment problem, called HC1, HC2, and HC3. All of the handcrafted policies
first take the action greet. HC1 takes the ask-from and ask-to actions to fill the
from and to fields, performing no confirmation. If the user does not respond, it
re-tries the same action. If it receives an observation which is inconsistent or
nonsensical, it re-tries the same action. If it fills both fields without receiving
any inconsistent information, it takes the corresponding submit-x-y action. A
logical diagram showing HC1 is shown in Figure 7.11

HC2 is identical to HC1 except that if the machine receives an observation
which is inconsistent or nonsensical, it immediately takes the fail action. Once
it fills both fields, it takes the corresponding submit-x-y action.

HC3 employs a similar strategy to HC1 but extends HC1 by confirming
each field as it is collected. If the user responds with “no” to a confirmation, it
re-asks the field. If the user provides inconsistent information, it treats the new
information as “correct” and confirms the new information. If the user does not
respond, or if the machine receives any nonsensical input, it re-tries the same
action. Once it has successfully filled and confirmed both fields, it takes the
corresponding submit-x-y action.

greet

submit
X-Y

ask
to

ask
from

ask
from

else

from X
to Y

X
from X

from X to Y

from X toY

X
from X

Y
toY

from X toY

from X toY

else else else

Figure 7. HC1 handcrafted controller.

11A logical diagram is shown for clarity: the actual controller uses the real values a, b, and c, instead of the
variables X and Y, resulting in a controller with 15 states.
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Figure 8. Gain in average/expected return for HC1 executed using belief state monitoring vs
perr for a = 0. (The POMDP policy, which we take to be our practical upper bound, is shown
for reference in Figures 8 through 10.)

We first studied the operation of the greedy improvement method without
access to confidence score information. We executed 10,000 dialogues for each
handcrafted policy at values of perr ranging from 0.05 to 0.65. Figure 8 gives
results for HC1. To make the gain of the greedy improvement method explicit,
Figure 8 shows the difference between the proposed method and the expected
value of executing the handcrafted policy directly. For reference, Figure 8
also includes the difference between the handcrafted policies executed nor-
mally and the POMDP policy, which we take to be a practical upper bound
for the test-bed problem. Error bars show the 95% confidence interval for the
true expected return assuming normal distribution. We note that in almost all
cases, the greedy improvement method results in a significant improvement. In
many cases, the improved handcraft controller is close to the POMDP policy –
our assumed practical upper bound. Results for HC2 and HC3 are shown in
Figures 9 and 10.

We next studied the operation of the greedy improvement method when
confidence score information is present. Figures 11, 12, and 13 show aver-
age returns for the discrete-POMDP and improved handcraft methods vs a for
perr = 0.3, 0.4, and 0.5, respectively. a is defined as in Section 4.2 – i.e.,
a = acorrect = aincorrect. Error bars are negligible and are not shown. For
each of the three handcrafted controllers in each of the three values of perr,
increasing a consistently increases average return.
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Figure 9. Gain in average/expected return for HC2 executed using belief state monitoring vs
perr for a = 0.
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Figure 11. Average return vs a (informativeness of confidence score) for perr = 0.30 for
discrete-POMDP and handcrafted policies executed with belief state monitoring.
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Figure 13. Average return vs a (informativeness of confidence score) for perr = 0.50 for
discrete-POMDP and handcrafted policies executed with belief state monitoring.

6. Conclusions
This chapter has shown how a confidence score can be directly incorporated
into the dialogue model represented as a Partially Observable Markov Deci-
sion Process (POMDP) used for dialogue management. Unlike traditional ap-
proaches which maintain a single dialogue state at each time step, in effect
a POMDP considers all possible dialogue states, and maintains a probabil-
ity distribution over these called a belief state. This representation allows a
confidence score to be tracked in the dialogue state in a principled fashion,
and optimising the POMDP produces a dialogue manager which exploits this
representation when selecting actions. In evaluation, the POMDP significantly
outperforms a baseline MDP, which tracks only one hypothesis for the dia-
logue state.

This chapter has also presented a second approach to policy production in
which a handcrafted controller which does not account for confidence score
information can be improved to automatically account for confidence score
information.

The problems considered here were unrealistically small for real-world de-
ployment, and recent work has shown how to scale POMDPs to slot-filling
problems of a realistic size (Williams and Young, 2005). Also, this chapter has
considered only the top recognition hypothesis and confidence score. A natural
extension would to be consider more complex hypothesis representations such
as N-Best lists or word lattices, and more recognition features such as prosodic
information, parse scores, or acoustic metrics.
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Chapter 9

DOES THIS ANSWER YOUR QUESTION?

Towards Dialogue Management
for Restricted Domain Question Answering Systems

Matthias Denecke and Norihito Yasuda
Communication Science Laboratories
NTT Corporation, Kyoto, Japan
deneckecslab.kecl.ntt.co.jp, n-yasuda@cslab.kecl.ntt.co.jp

Abstract Interactive Restricted Domain Question Answering Systems combine the in-
teractivity of dialogue systems with the information retrieval features of ques-
tion answering systems. The main problem when going from task-oriented dia-
logue systems to interactive restricted domain question answering systems is that
the lack of task structure prohibits making simplifying assumptions as in task-
oriented dialogue systems. In order to address this issue, we propose a solution
that combines representations based on keywords extracted from the user utter-
ances with machine learning to learn the dialogue management function. More
specifically, we propose to use Support Vector Machines to classify the dialogue
state containing the extracted keywords in order to determine the next action to
be taken by the dialogue manager. Much of the content selection for clarification
question usually found in dialogue managers is moved to an instance-based gen-
eration component. The proposed method has the advantage that it does not rely
on an explicit representation of task structure as is necessary for task-oriented
dialogue systems.

Keywords: Restricted domain question answering system; statistical dialogue management;
instance-based generation

1. Introduction
Question answering is the task of providing natural language answers to natural
language questions using an information retrieval engine. Question answering
systems work well in the presence of highly specific keywords in the queries,
but deteriorate in case of vague or ambiguous questions.
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Dialogue systems address the problem of accessing information from a
structured database (such as timetable information) or controlling appliances
by voice. The responsibilities of task-oriented dialogue managers can be
broadly grouped into eliciting task-relevant information from the user and
managing error recognition and correction to compensate for speech recog-
nition errors (see Zue and Glass, 2000) for a more detailed analysis. In order to
accomplish the first task, namely deciding whether and how to elicit informa-
tion from the user, a dialogue manager can rely on a structured domain model.
In the simplest case, the domain model can consist of a set of slots to be filled,
and the dialogue manager prompts the user until all slots are actually filled.

Restricted domain question answering systems can be deployed in inter-
active problem solving solutions, for example, software troubleshooting. An
overview of potential applications is given in Minock (2005). In these scenar-
ios, interactivity becomes a necessity. This is because it is highly unlikely that
all facts relevant to retrieving the appropriate response are stated in the query.
For example, in the software troubleshooting task described in Kiyota et al.
(2002), a frequent system generated information seeking question is for the
version of the software. Therefore, there is a need to inquire additional prob-
lem relevant information from the user, depending on the interaction history
and the problem to be solved, and therefore, there is a need to equip question
answering systems with dialogue capabilities.

However, a straightforward adaptation of techniques used in spoken dia-
logue systems to question answering systems is elusive due to the absence of
a structured task model. To illustrate the point, consider a simple database as
the back-end of a dialogue manager. The database schema, containing the field
names and their data types, defines the information seeking questions a dia-
logue manager can ask. The result set from the database for any given query
dictates whether and what sort of disambiguation questions the user needs
to be asked; prompting the user for fillers for those slots that have multiple
fillers will eventually reduce the size of the result set to 1. Ferrieux and Sadek
(1994) describe an algorithm that performs the task described informally here.
Denecke and Waibel (1997) describe an algorithm to determine the contents of
prompts based on an ontology, and Rudnicky and Wu (1999) derive the order
of prompts from an agenda. All three approaches rely critically on the presence
of a structured task model that contains at least the slots the user needs to be
prompted for. See Section 2 for a more detailed discussion.

Once the database engine is replaced with an information retrieval engine,
a structured task model is not available. Therefore, the task to decide whether
to prompt the user for more information, and, if so, how to prompt for more
information, becomes difficult. First, the scope of the dialogue is determined
by the text documents in the question answering system. Consequently, it is not
straightforward to determine a list of slots that should be known to the system.
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Even if that list of slots could be determined, it is a non-trivial task to extract
the relevant fillers from a retrieved text document and make them available to
the dialogue management algorithms described above.

1.1 Addressed Problem
We investigate how a dialogue manager can decide whether and how to prompt
a user for more information in the absence of a structured task model, with the
goal of equipping a restricted domain question answering system with dia-
logue capabilities. To achieve this goal, we relate information relevant for text
retrieval (such as question types, or key words) with the texts retrieved by the
question answering system. We use statistical classifiers to determine the ac-
tion taken by the dialogue manager.

The focus of our approach is in contrast to current research on statistical
methods in the area of spoken dialogue systems which typically focuses on
optimising dialogue strategies in the presence of recognition errors. For ex-
ample, Markov Decision Processes and Partially Observable Markov Decision
Processes optimised with reinforcement learning have been shown to reduce
dialogue length or increase user satisfaction compared to handcrafted systems.
While optimising dialogue strategies for recognition errors is an important re-
search topic, we focus in this work on the problem of determining whether,
and how, the user should be prompted for more information.

1.2 Our Approach
Our central idea to dialogue management for restricted domain question an-
swering systems is to defer much of the work to the natural language gener-
ation component. The dialogue manager is only responsible for choosing one
among a set of predefined actions (the equivalent for a task-oriented dialogue
manager would be just to determine whether to prompt for a new slot filler or
to confirm a filled slot, but without deciding which slot to prompt or to con-
firm). This allows us to cast the dialogue management problem as a multi-class
classification problem, with a small number of classes. The concrete realisation
of the action to be taken is carried out by an instance-based generation com-
ponent that modifies example sentences from that chosen class to the given
context and presents them to the user. The generation component is described
in detail in Denecke and Tsukada (2005).

Besides the absence of a structured task model we need to address the
problem of data sparseness. It is difficult to obtain sufficient data such that
a complex dialogue function can be learned reliably (see also Section 3). For
this reason, we intend to reduce the complexity of dialogue management, and
assign some of the tasks usually performed by a dialogue manager to the gen-
eration component.
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It could be argued that moving responsibility from the dialogue manager
to the natural language generation component is simply an engineering con-
cern. However, we exploit the fact that an instance selection mechanism is
already part of any instance-based generation component. We abuse this se-
lection mechanism by assuming that the selection will not only appropriately
determine the form, but also the content of the prompt to the user.

Since the action to be taken depends both on the dialogue context and the
retrieved documents of the question answering system, both need to be taken
into account by the learning algorithm. More specifically, we are interested in
learning a function

a = f(c, l)

that, given a dialogue context c and an n-best list of retrieved documents l,
decides an appropriate action a for the dialogue manager. In particular, we
wish to learn a function that answers the two questions:

1 Does the user need to be prompted for more information?

2 If so, how should the user be prompted?

For classification, we use Support Vector Machines (Vapnik, 1995). The
choice of Support Vector Machines is motivated by two factors. First, they
are capable of supervised learning in high dimensional feature spaces, a fact
that has been amply demonstrated in the literature. Second, it is possible to
introduce a learning bias, or domain knowledge, by means of the choice of the
kernel function. As we would like to investigate how best to learn the dialogue
function, we compare the efficacy of several kernel functions.

Levin et al. (2000) argue that supervised learning is not appropriate for
optimising a dialogue strategy, but see Henderson et al. (2005) for a hybrid
approach to learning dialogue strategies, including supervised learning. We
emphasise again that our goal is not the optimisation of a dialogue strategy. In-
stead, our goal is to determine whether the current dialogue context is lacking
information, and if so, how it best can be obtained, given past experience.

To summarise, our approach can be described as follows. After processing
the current user utterance, a multi-class classifier assigns one out of a few la-
bels to the current dialogue state. The label constrains the form of action to be
generated by the dialogue manager. Subsequently, an instance-based genera-
tion component retrieves an utterance from a corpus that is similar to the one
to be generated. The retrieved utterance is adapted to the current context by
replacing content words and presented to the user.

1.3 Our System
We implemented an interactive restricted domain question answering system
that combines features of question answering systems with those of spoken
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Figure 1. Overview of the system.

dialogue systems. The system has been developed for Japanese, and the task
we chose is to inform users on several aspects of travel destinations in Japan.
This resulted in a system that, from the standpoint of vocabulary size, is lo-
cated somewhere between question answering systems and spoken dialogue
systems. It is so large that domain modelling as done in spoken dialogue sys-
tems typically becomes impractical due to the required manual labour, but not
large enough to answer all questions one might think of.

We show an overview of our system in Figure 1. In particular, the relation-
ship between the question answering system and the dialogue manager can be
seen. The user input is passed on to the question answering system which ex-
tracts keywords and classifies the question. The determined information is inte-
grated with the context and passed on to the information retrieval engine which
returns an n-best list of documents that best fit the question. Subsequently, the
dialogue manager needs to determine whether to present the answer extracted
from the highest ranking document to the user or whether to inquire additional
information from the user.

2. Background
Task-oriented dialogue systems were among the first commercially available
natural language processing systems. The manageability of task-oriented sys-
tems stems from the fact that natural language processing, when limited to a
specific task, can impose several simplifying assumptions. Thus, the natural
language processing aspect of it becomes more manageable.

However, the simplifying assumptions are not limited to the size of gram-
mars or the possibility to use template-based natural language generation.
Dialogue management proper benefits from the fact that the purpose of
the dialogue is the interaction of the user with a back-end system with
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limited functionality. Interactive question answering systems whose back-end
application is a generic information retrieval system do not have the benefit of
structure in the way task-oriented dialogue systems have.

2.1 Structured and Unstructured Information
for Dialogue Processing

In this section, we point out the ways in which the structure of the back-end
application has been exploited in dialogue managers. In the following section,
we discuss different approaches to interactive question answering systems.

Given the nature of the application, database schemata of relational data-
bases are one of the most frequently used sources of structured information
in dialogue managers. A database schema can be seen as a form of type in-
formation on the information stored in databases, much the same way as an
XML Schema is a typing scheme for XML documents. For example, Ferrieux
and Sadel (1994) describe an algorithm that determines the slots to prompt
the user for. The algorithm is based on the database schema and the records
retrieved from the database. It is the structure of the database, as represented
in the schema, together with the number of potential fillers, that determines
which values to prompt for. Similarly, Denecke and Waibel (1997) propose a
data driven approach to determining which questions to ask based on the struc-
ture of an ontology. The difference to the work by Ferrieux and Sadek (1994)
is that the ontology adds structure to the retrieved record sets so that cascading
follow-up questions, leading to the filler of only one slot, can be asked. Also,
using subsumption information, potential fillers can be inferred from the on-
tology in case database access is not possible, for example because the result
set is too large. Flycht-Eriksson and Jönsson (2003) propose to use a domain
specific ontology to enhance the information contained in free form text. A
different problem was tackled by Rudnicky and Wu (1999) who introduced
task models to dialogue management. Here, it is the structure of the domain
that guides the sort of questions that are asked. A task model is a hierarchical
representation of tasks that make up the dialogue. At any point, one task is ac-
tive. Depending on the interaction with the user, the system moves to another
task, a subtask, or repeats the current task. In all three examples, task-specific
structure helps to answer the two questions outlined in the introduction.

2.2 Question Answering Systems
and Dialogue Systems

One of the earliest systems in which a free text database could be queried
in natural language was proposed by Wilensky et al. (1984). The queried text
consisted of the Unix manual pages, and while the system had limited dialogue
capabilities, contextual information could be processed.
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More recently, Kiyota et al. (2002) proposed an interactive question answer-
ing system that helps users troubleshoot problems with computer systems. In
case the user does not present all information necessary to determine the cor-
rect help text, a dialogue manager detects vague questions and, if necessary,
prompts the user for additional information. The prompting is based on so-
called dialogue cards which can be seen as simplified dialogue scripts. If the
user’s question matches one of a list of questions on the dialogue card, pre-
determined information seeking questions associated with the dialogue card
are presented to the user. However, the approach using dialogue cards cannot
be easily extended to an open-domain interactive question answering system
since the cost of creating the dialogue cards would be prohibitive.

In an updated version of the system, an information gain criterion is pro-
posed to decide which question to ask (Misu and Kawahara, 2005). As in the
case of the dialogue cards, a set of pre-prepared questions is provided.

One approach to determine whether to pursue a dialogue is to match the
question with the retrieved answer. In case the match is poor, it is assumed
that the information provided by the user is not specific enough; therefore the
system engages in dialogue. Matching between questions and answers, albeit
with a different motivation, is described in Brill et al. (2001). In order to avoid
question classification, Brill et al. (2001) proposes to reformulate the query
into a declarative sentence and to rank documents retrieved by a search en-
gine based on whether (and how often) a given document contains a sentence
with similar structure. The query reformulation takes place en lieu of question
classification.

Hori et al. (2003) propose an interactive voice question answering system
in which a list of information seeking questions is hypothesized for each user
input. The information seeking questions are generated by using templates in
which chunks of the user question are inserted. The template depends on the
type of the question as determined by the question answering system. For each
hypothesized question, an ambiguity score is calculated. This score depends
on the result set and the phrase inserted in the template. If there is a disam-
biguation question with a score higher than a given threshold, the question is
asked; otherwise the answer is generated.

In order to increase the structure of the documents returned from the ques-
tion answering system, Small et al. (2004) propose to extract information using
various means from the retrieved documents. The extracted information is then
represented in frame-like structures which allows the application of methods
known from task-oriented dialogue management.

The work on interactive question answering systems cited above and pro-
posed here is different from the work proposed in De Boni and Manandhar
(2003) in that here, the authors are interested in detecting whether a question
from a user is a follow-up question to a previous question or not. This contrasts
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with our desire to determine the need for system initiated clarification dia-
logues and the generation thereof. Of course, from an interaction perspective,
the differences in approaches result in different degrees of system initiative,
but the underlying technologies are also different.

2.3 Support Vector Machines
In recent years, Support Vector Machines have been applied successfully in
several pattern recognition applications (Vapnik, 1995). Their popularity is due
to the fact that they can be applied in high dimensional feature spaces without
actually incurring the high cost of explicitly computing the feature map. Sup-
port Vector Machines are instances of supervised learning algorithms. A su-
pervised learning algorithm attempts to learn a decision function f : X → Y
from labelled examples {(x1, y1), . . . , (xn, yn)}. In the case of Support Vector
Machines, we have Y = {−1, +1}.

Given a set of labelled training examples, a Support Vector Machine
attempts to determine hyperplanes separating the positive from the nega-
tive examples such that the margin between the classes is maximized. In order
to improve classification performance, the training examples are separated not
in the input space but in some high-dimensional feature space. The reason
this can be done efficiently is that instead of determining the image φ(xi) of
the training examples in the feature space and calculating their inner prod-
uct 〈φ(xi), φ(xj)〉 there, the distance is calculated implicitly by the kernel
function K(xi,xj) = 〈φ(xi), φ(xj)〉.

2.3.1 Multi-class classification. As described in Section 1.2, we
would like to classify the dialogue and the user input into one out of n classes.
The classification is used to determine what kind of output to the user is to be
generated. Section 3 gives an overview of how the number and meaning of the
classes is determined.

However, standard Support Vector Machines provide only binary classifi-
cation. There are several proposals on how to do multi-class classification us-
ing Support Vector Machines. One-vs-all classification is a simple approach
in which one binary classifier is trained separately for each class, whereby the
members of that class are given as positive examples and members of all other
classes are given as negative examples. During classification, each binary clas-
sifier outputs a distance of the input to the closest decision boundary. This dis-
tance can be used as an indicator of “how sure” the classifier is regarding the
classification. Therefore, the classifier outputting the largest positive number
wins and determines the class of the input.

An alternative is to follow the approach of Weston and Watkins (1999),
where a form of voting takes place during classification.
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2.3.2 Convolution kernels. Initially, kernel-based learning algo-
rithms have been applied to various tasks in attribute-value learning in which
attributes are represented as components xi of vector x. This approach does
not scale well to domains such as natural language processing in which the
representation of structure is necessary in order to achieve good classification
performance. While Bag-of-Words techniques can be applied as an approxi-
mation to derive features for classifiers, the loss of structure is not desirable.
To address this problem, Haussler (1999) proposed convolution kernels that
are capable of processing structured objects x and y consisting of components
x1, . . . , xm and y1, . . . , yn. The convolution kernel of x and y is given by the
sum of the products of the components’ convolution kernels. This approach
can be applied to structured objects of various kinds, and results have been
reported for string kernels and tree kernels.

The idea behind convolution kernels is that the kernel of two structures is
defined as the sum of the kernels of their parts. Formally, let D be a positive
integer and X, X1, . . . , XD separable metric spaces. Furthermore, let x and
y be two structured objects, and x = x1, . . . , xD and y = y1, . . . , yD their
parts. The relation R ⊆ X1 × . . . × XD × X holds for x and x if x are the
parts of x. The inverse R−1 maps each structured object onto its parts, i.e.
R−1(x) = {x : R(x, x)}. Then the kernel of x and y is given by the following
generalised convolution:

K(x, y) =
∑

x∈R−1(x)

∑
y∈R−1(y)

D∏
d=1

Kd(xd, yd)

Informally, the value of a convolution kernel for two objects X and Y is
given by the sum of the kernel value for each of the sub-structures, i.e. their
convolution.

Collins and Duffy (2001) described the application of convolution kernels
to several natural language processing tasks, focusing on the case where the
substructures convoluted by the kernel are trees.

Suzuki et al. (2003) proposed Hierarchical Directed Acyclic Graph kernels
in which the substructures contain nodes which can contain graphs themselves.
The hierarchy of graphs allows extended information from multiple compo-
nents to be represented and used in classification. In addition, nodes may be
annotated with attributes, such as part of speech tags, in order to add informa-
tion. For example, in a question answering system, components such as named
entity extraction, question classification, chunking and so on may each add
to the graph. Figure 2 shows the graph structure of a sentence after having
been preprocessed; this graph structure is the structure that is processed by the
HDAG kernel.
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Figure 2. An example of hierarchical sentence structure.

The way to arrive at the graph structures (and the one we follow) is to subject
each sentence to an extensive analysis. Since in Japanese, words are not sep-
arated by spaces, the input sentence is broken down into words and analysed
morphologically by ChaSen (Asahara and Matsumoto, 2000). Based on this
analysis, dependency analysis is done using CaboCha (Kudo and Matsumoto,
2002). With each node a word stem is associated with semantic information
extracted from “Goi-Taikei” (Ikehara et al., 1997), a semantic network similar
to the English WordNet.

3. Corpus
We collected a corpus for our instance based generation system as follows. We
set up communications between a wizard and users.

3.1 Data Collection
The subjects were instructed to ask travel-related questions. The subjects’
utterances were recorded and later transcribed. The wizard, placed in a differ-
ent room, would engage in the dialogue by typing her answers and displaying
it on the subjects’ screen.

The questions the subjects were instructed to ask comprise what kind of
accommodation is available, if the destination is known for special food (var-
ious areas in Japan are renowned for food that can be had only there), famous
sightseeing spots and events, if the destination is important for the history of
Japan, and if so, how. The restriction on the kinds of question was motivated
by the fact that certain kinds of questions are not well suited for interactive re-
stricted domain question answering systems. In particular, simple factual ques-
tions (such as: “How much is a stay in the hotel for three nights?”) are better
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handled by task-oriented dialogue systems, a problem we did not want to ad-
dress in this study. Altogether, 20 users participated in the data collection effort.
The participating users were not computer experts, and did not participate in
similar research experiments before.

The wizard was instructed to “act like the system” we intend to build, that
is, she was required to interact with the user either by prompting for more
information or by giving the user the information she thought he wanted.

3.2 Corpus Properties
Each of the 20 users contributed 8 to 15 dialogues. The length of the dialogues
varies between 11 and 84 turns, the median being 34 turns. Altogether, the
corpus consists of 201 dialogues. The corpus consists of 6,785 turns, 3,299 of
which are user turns and the remaining 3,486 are wizard turns.

The instructions imposed on the wizard in the onset of the data collection
caused each dialogue to consist either of an equal number of user and wizard
turns (in case the user ends the dialogue; 14 cases) or one wizard turn more
than user turns in case the wizard ends the dialogue (187 cases). For the same
reason, misunderstandings were rare, and corrections did not occur often. In
the implemented system, no special form of discourse processing takes place,
although, if suitably implemented, it is expected to increase performance. Due
to the nature of the Japanese language, phenomena interesting to discourse
processing, such as ellipses and anaphora, are mostly realised through omission
(implicit contextual understanding is often required in Japanese).

Figure 3 shows the first part of a dialogue from the corpus.

Figure 3. An extract from the dialogue corpus used. The letter ‘U’ identifies user utterances,
the letter ‘W’ identifies wizard utterances.
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3.3 Corpus Annotation
We recall from the introduction that the purpose of the system-generated ques-
tions is to integrate additional information from the user in the information
retrieval. However, due to the absence of a structured task model in restricted
domain question answering systems, it is not obvious how to decide whether
the system should generate an information seeking question, or return the high-
est ranking answer from the question answering system to the user. The infor-
mation based on which this decision can be made consists of the user question
and the retrieved documents, together with the answers as extracted by the
question answering system.

In task-oriented dialogue processing, the specificity of the information ac-
quired from the user can be stated explicitly in terms of the task model (all slots
are filled, or confirmed etc.). This is not possible in our situation. Therefore, we
attempt to capture the specificity of the acquired information indirectly. We as-
sume that the wizards’ reaction to the user’s utterance expresses the specificity
of the acquired information: If the wizard asks a question, more information
is needed, if the user gives the desired answer, the acquired information was
sufficient to complete the task. Therefore, the key idea of our approach is to
observe the user–wizard exchanges, label user-wizard utterance pairs accord-
ing to specificity and learn a classifier that approaches the behaviour of the
wizard.

To this end, each dialogue is divided in utterance pairs. Each utterance pair
contains a user turn followed by a wizard turn. Each utterance pair is manually
classified into one out of 8 classes according to the schema shown in Figure 4.

if (wt is not question)
if (ut is yes/no question) assign 1
else if (ut is enumeration question) assign 2
else if (ut is wh question) assign 3
else assign 4

else
if (wt is yes/no question) assign 5
else if (wt is enumeration question) assign 6
else if (wt is wh question) assign 7
else assign 8

Figure 4. Annotation algorithm used to annotate the dialogue corpus (ut and wt refer to user
utterance and wizard utterance, respectively).



Does This Answer Your Question? 231

Table 1. Distribution of utterance pair classes before and after cleaning. The classes are sorted
according to specificity of the question-answer pair, i.e. class 1 is a yes-no question asked by
the user that is answered by the wizard, whereas class 8 corresponds to an interaction in which
the user asks some question which is followed up with a counter question by the wizard.

Label 1 2 3 4 5 6 7 8

Raw 530 2 2,209 3 454 23 76 2

Clean 530 2,211 0 454 99 0

According to this annotation scheme, the exchange “I would like to take a
weekend trip to Hakone.” – “Would you like to stay in a hot spring resort or in
a standard hotel?” would be classified as class six.

After annotation we found that the distribution of labels is extremely
skewed, as instances of classes two and eight have been observed only twice,
respectively, in the entire corpus. For that reason, we merged classes two and
three, and classes six and seven, respectively. Moreover, we removed instances
of classes four and eight from the corpus. The raw and clean counts of the
classes in the dialogue corpus are distributed as shown in Table 1.

To the best of our knowledge, the proposed annotation scheme is differ-
ent from other schemes that are usually adopted for dialogue annotation. The
motivation behind this annotation scheme is to use the obtained data to learn
the dialogue classifier. Therefore, we deliberately ignore information such as
dialogue structure which is in contrast to other annotation schemes.

4. Representations and Dialogue Management
Before we discuss our choice of kernel functions, we detail the function f
we would like to learn. The representations to be classified need to capture
two aspects of the dialogue state: (1) how specific is the information gathered
so far, and (2) how well does the highest ranking document from the current
n-best list answer the users’ question? The first aspect is expressed by the
context representation, the second by the relationship between the gathered
information and the highest-ranking document in the n-best list.

In the following sections, we describe how features for the representation of
context c and the answer list l are extracted.

4.1 Context Representation
We choose a simple discourse representation in which the user turns as well as
information extracted from them are stored. More specifically, we memorise
the user turn utT at time T , the set of keywords kw(utT ) extracted from utT
by the question analysis module and the question type qt(utT ) determined by
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the question classifier. At time T , we also have access to an n-best list of doc-
uments AT = 〈a1

T , . . . , an
T 〉 which are returned from the question answering

system.
The dialogue state at time T is then given by the three lists 〈ut1, . . . , utt〉,

〈kw(ut1), . . . , kw(utT )〉 and 〈A1, . . . , AT 〉. A dialogue state contains too
much information to be used directly for classification purposes. We discuss
several ways of extracting features relevant for classification in the following
sections.

User input and context in spoken dialogue systems is often represented as
fillers of a predefined set of slots. A straightforward adaptation to interactive
restricted domain question answering systems is not straightforward, because
it is difficult to determine the set of slots necessary for the application at hand.
Since we intend to use the representations for classification purposes, we adopt
a bag of words approach that is often used in kernel-based methods.

4.1.1 Pure context. While in task-oriented dialogue systems, the
representation of context is an accumulation of slot-filler parts of some form,
we cannot resort to this technique, because a predefined set of slots is not given.
Therefore, we propose to generalise slot-filler representations such that the in-
formation relevant to the information retrieval process is memorised. We ar-
rive at a bag-of-word representation of a sentence by tokenizing and tagging
the sentence (Japanese does not use space between the words). Then, all con-
tent words are added to the bag of words. However, the chosen content words
may be too specific or too vague for classification purposes. For that reason,
we add all hypernyms of all present nouns to the set.

In other words, our first proposal for context representation at time T is
given by

CT = Cl

(
T⋃

t=1

kw(utt)

)
(9.1)

where Cl is the closure function mapping a set of words to a larger set that also
contains all hypernyms. Informally, this is the set of all keywords extracted
from the user utterances up until now, augmented by the closure of concepts to
include hypernyms.

4.1.2 Filtered through results. In information retrieval sys-
tems using large corpora co-occurrence between terms is used as an additional
source of information. In other words, the fact that two terms appear in the
same documents more often than chance is used to address problems such as
synonyms. When representing the context for classification, we would like to
take advantage of this concept as well. We can do this in an indirect way by
extracting relevant terms from the retrieved documents and add them to our
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context representation. This can be done as follows. Let N be the set of all
nouns occurring in the dialogue training corpus. Furthermore, the document
a1

T refers to the highest ranking newspaper article retrieved at time T . An ap-
proximation of those nouns in the document relevant to the travel domain can
be given by the intersection of the set of all nouns in the document with the set
N . This leads to the following equation.

CT = Cl

(
T⋃

t=1

kw(utt) ∩ N ∩ Cl(a1
T )

)
(9.2)

4.2 Answer Representation
In addition to a representation of the context, it is possible to represent the
degree to which the retrieved documents answer the question asked by the
user. We assume that this feature can be expressed by a relationship between
the representation of the context and the retrieved documents.

4.2.1 Content word intersection. A straightforward approach
to extract a relationship between the informational content in the context and in
the retrieved document is to determine bag-of-words representations for each
and calculate the intersection:

AT = Cl

(⋃
t

kw(utt) ∩ answer(a1
T )

)
(9.3)

where answer is a function that takes a document and extracts the sentence
that (according to the question answering system) constitutes the answer to the
user’s question.

4.3 Alignment
A potential drawback to the bag-of-words representation described above is
the loss of information that occurs as sentence structure is ignored. For this
reason, our second approach is to determine an alignment between the user
input sentence and the answer sentence extracted from the document. Given
a question and a list of answer candidates, we submit the question and each
answer candidate to several steps of linguistic analysis, and try to match the
resulting structures of the question with each of the structures of the answer
candidates. If there is a close match, the answer candidate is considered a valid
answer. This approach is motivated by the work by Brill et al. (2001) described
above.

The purpose of this approach is to build a classifier that determines whether
the sentence shown in Figure 5 (b) is an answer to the query shown in
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Figure 5. Analysis.

Figure 5 (a). In other words, we are interested in classifying the relation
between sentence 5 (a) and sentence 5 (b). Therefore, we need to add struc-
ture to 5 (a),(b) that makes explicit the relationship between the dependency
structures. We do this by aligning the dependency trees for the question and
the answer with each other. Then, we form a graph consisting of the depen-
dency tree of the question, the dependency tree of the answer and the edges
representing the alignment. In the following, we refer to the surface form of
the question and answer as q and a, respectively, their dependency trees as t(q)
and t(a), and a possible alignment of t(q) with t(a) as A(q, a). Figure 6 shows
a resulting alignment. In contrast to the features described above, we cannot
use a standard kernel to classify the extracted structure. Instead, we use the
Hierarchical Directed Acyclic Graph kernel described above for classification
purposes.

It counts as a positive example if the presented answer is indeed the correct
answer to the question and as a negative example if not. In the following, we
present the preprocessing before the alignment and propose two different ways
to perform the alignment.

4.3.1 Preprocessing. Before the alignment can take place, we
need to perform some preprocessing in order to address the differences
between question and answer. We are primarily concerned with two issues.
First, we need to address the fact that nodes containing the question word
(such as who, what, where and so on) need to be treated differently. We do
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Figure 6. One possible alignment of the dependency trees shown in Figure 5. The alignment
of the chunk nodes is not shown for clarity, but is added to the graph as well.

this as follows. From the training corpus, we associate with each question type
the used question words. Then, in order to identify the node containing the
question word in the dependency tree of the question, we determine the nodes
that are associated with a word in the list.

4.3.2 Detailed alignment. The detailed alignment is an attempt
at aligning as many nodes as possible in t(q) with nodes in t(a). In order to
abstract away the particular realisation of question and answer, we do not con-
sider nodes whose part of speech tag is not a noun, verb, adjective or adverb.
In the following we refer to a node from the question or answer dependency
tree as nq, and na, respectively. The ith attribute of a node n is indicated by
attrn(i). The part of speech of n is written as pos(n). The ith node contained
in n can be accessed by node(n, i). We distinguish between word and chunk
nodes. A word node is a node containing a word appearing in the surface
form of the question or answer, but does not contain other words. Examples
of word nodes include the nodes labelled with the words “Nariko” or “book”
in Figure 5. A chunk node is a node containing other nodes. Chunk nodes
are shown as square boxes in Figure 5. We are interested in determining the
value V (nq, na) of aligning node nq with node na. We distinguish three cases:
the value of the alignment if both nodes are word nodes, the value of the
alignment if both nodes are chunk nodes, and the remaining case. A value
of V (nq, na) = −1 represents the fact that nq and na are not aligned.



236 RECENT TRENDS IN DISCOURSE AND DIALOGUE

We first consider cases in which both nq and na contain the representation
of a word. The nodes carry information on the surface string, the uninflected
word, the part of speech, and semantic tag. The value of the alignment between
two word nodes is given by the number of attributes contained in the question
node that are also contained in the answer node. This characteristic is intended
to capture the fact that information present in the answer but not in the question
does not hurt the association, while the other way round it does.

V (nq, na) =
{ |{i : attrnq(i) = attrna(i)}| if pos(nq) ∈ list

−1 otherwise

A chunk node contains references to word nodes, and, since the graphs are
hierarchical, other chunk nodes. For alignment purposes, we consider a chunk
node a set of nodes. We do not take those word nodes into account. Given two
chunk nodes, the cost of associating between them is calculated recursively
according to

V (nq, na) = max
π∈Π(s)

∑
j

V (node(nq, j), node(na, π(j)))

where Π(s) is the set of all permutations of {1, . . . , s} and s is the number of
nodes contained in nq.

The value V (nq, na) equals 0 if one node is a word node while the other is
a chunk node.

Dynamic programming is used to determine a minimal association be-
tween the structures of the query and the potential. A solution to the example
sentences from Figure 5 is shown in Figure 6. Once the alignment has been
determined, the edges 〈nq, na〉 for which V (nq, na) > 0 are added to the
graph. In addition, for each node n in t(q) that is not aligned with some node
in t(a), we add a new node n′ and align n with n′. The resulting structure is
shown in Figure 6.

4.3.3 Sloppy alignment. Sloppy alignment is identical to detailed
alignment except that after alignment only those edges 〈nq, na〉 for which
V (nq, na) > 0) such that nq is a chunk node are added to the graph. Figure 7
shows the sloppy alignment.

4.3.4 Thinning. In order to avoid memorisation, we remove fea-
tures from the graph structures. We propose to thin out the graph and make the
alignment structure more visible. The resulting graph of the example is shown
in Figure 8.
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Figure 7. One possible sloppy alignment of the dependency trees shown in Figure 5.

Figure 8. Alignment shown in Figure 7 after thinning.

5. Dialogue Management
After having discussed the choice of representations, we proceed to describe
dialogue management based on the representations. We recall from the intro-
duction that our approach to dialogue management is to classify the dialogue
state such that the resulting class is an indicator of the kind of action to be
taken. The responsibility for carrying out the chosen action lies entirely with
the generation component. Generation is an instance-based approach which
takes sentences from the corpus and adapts them to the current dialogue situa-
tion as necessary.
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5.1 Classifiers and Kernels
For our experiments with binary classifiers, we use TINYSVM as an imple-
mentation of the SVM classifier. To choose the winning class, we use one-vs-
all classification. For our experiments using multi-class classification, we use
an implementation of the classifier described in Weston and Watkins (1999).

5.2 Dialogue Management Algorithm
The dialogue management consists mainly of updating the chosen context rep-
resentation, generating the input representation to the classifier and passing on
the result to the instance-based generation system. The dialogue management
algorithm is shown in Figure 9.

5.3 Instance-Based Generation
Given a query q asked by the user, and an answer n-best list 〈a1, . . . , an〉 gen-
erated by the question answering system, the classifier determines for each
alignment A(q, ai) whether ai is an answer candidate for q, and if so, the an-
swer is added to the content for the information seeking question.

In order to turn the action a as determined by the classifier, into an ac-
ceptable utterance, we are pursuing an approach of instance-based generation.
In this approach, appropriate sentences are selected from the dialogue cor-
pus, adapted to the current context where necessary, and finally presented to
the user. In short, the instance-based method for information seeking question
generation works as follows. A dialogue with “similar context” is retrieved
from the example corpus, the information-seeking question following the “sim-
ilar context” is chosen, the content words in this question are determined and

Input User query
Output Utterance type

Step 1: Perform standard question classification
and keyword extraction on user query

Step 2: Add extracted features to dialogue context
Add hypernyms to dialogue context

Step 3: Perform standard IR using result of step 1
Add retrieved documents to dialogue context

Step 4: Classify dialogue context to obtain utterance type
and pass on result to instance-based generation

Figure 9. The dialogue management algorithm.
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exchanged with content words from the current corpus, and the question is
presented to the user.

As a consequence of our choice to defer specific content selection to nat-
ural language generation, our instance-based generation algorithm receives
much less specific information compared to task-oriented dialogue systems.
It is fairly typical to have the dialogue manager decide at least the slot to be
filled, if not the template to choose for generation. In our approach, however,
the input to the generation algorithm is only the output of the classifier. Like-
wise, the dialogue state is accessible to the generation algorithm for sentence
selection and adaptation.

We refer the reader to Denecke and Tsukada (2005) for details on the gen-
eration algorithm.

5.4 An Example Dialogue
The example dialogue transcript shown in Figure 10 was obtained during a
user study with a user that had not used the system before.

5.5 Comparison to Related Work
We compare our implementation with the three interactive question answering
systems DIALOGNAVIGATOR, HITIQA and SPIQA shown in Table 2. Table 2
summarizes features of the system relevant for our discussion.

In the case of the DIALOGNAVIGATOR, the users’ input is matched against
the questions on the dialogue cards. The earlier version of the DIALOGNAVI-
GATOR relies only on the information on the dialogue cards to determine what
to ask whereas the later version uses an information gain criterion to select

Figure 10. Example dialogue. The words replaced by the instance-based generation are high-
lighted in grey. In one instance, the generation component generated an utterance part of which
were nonsensical.
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among multiple questions. Finally, generation of the prompt is template-based
and done by presenting the question associated with the selected dialogue
card. The consequence of these design decisions is that the behaviour of the
DIALOGNAVIGATOR is easier to control than in our implementation as dia-
logue cards can be added and removed as needed. On the other hand, this ap-
proach requires a substantial amount of handcrafting and testing. While it is
possible in our case to add or remove (handcrafted) questions to the instance
base to force the system into a certain behaviour, such tweaking is not possible
for the dialogue manager as it relies on the output of the classifier. Another
difference is that DIALOGNAVIGATOR relies on explicitly coded templates for
generation while in our approach the prompts can be generated from a corpus
without the need to code templates.

HITIQA employs several text processing techniques to arrive at a slot/filler
representation where the vocabulary for slots and fillers is determined by an
ontology (WordNet). The slot/filler representation allows HITIQA to use di-
alogue algorithms similar to the ones used in spoken dialogue systems. For
instance, multiple fillers for one slot trigger a clarification question. In our sys-
tem, we use the information contained in an ontology indirectly by relying on
the question type and key word extraction algorithms of the question answer-
ing system, and directly by adding hypernyms of the extracted key words to
the context as described above.

In the case of SPIQA, whether to ask for more information is decided based
on the scores associated with the retrieved texts. The prompts are generated
based on sentence fragments extracted from the retrieved text. Strong assump-
tions are made on the form of the prompts; only wh-questions are permitted
and it is assumed that missing information can be concatenated to the sentence
fragments by means of the Japanese particle “no”. In our case, the form of the
prompts is only limited by the sentences in the corpus, as there are no a priori
limitations in the generation algorithm.

6. Evaluation

6.1 Methodology
The purpose of this work is to determine how best to decide on the action the
system should take. Therefore, we train different classifiers on the representa-
tions described in Section 4 and determine how well they perform on an unseen
section of the corpus. We combine the representations obtained by equations
9.1 and 9.2, respectively, with the representations obtained by 9.3 to yield the
input to our classifier. Using these data, we train two one-vs-all systems and
two multi-class classifiers, respectively, yielding a total of four different clas-
sifiers.
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We compare those classifiers trained on unstructured data against two classi-
fiers trained on hierarchical graph structures. In order to combine the alignment
structure obtained by the algorithm described above with the contextual repre-
sentation, we introduce a new graph node in the structure and add all contextual
features as children to this node. This results in six classifiers to compare.

We used a training set consisting of 151 dialogues to train the four different
versions of Support Vector Machines. The Support Vector Machines were then
used to predict the labels of the unseen corpus. The parameter C (a training
parameter for Support Vector Machines indicating sloppiness) was set to 1 in
all experiments.

6.2 The Question Answering System
For our experiments, we used the Japanese question answering system SAIQA
(Sasaki, 2002) as the building block. The text resources the system accesses
are the complete documents of the Mainichi Shimbun (a Japanese newspaper)
dating from 1991 to 2002.

6.3 Results
We obtained a total of six different classifiers. The results of the classifiers are
shown in Table 3. It can be shown that the context feature extraction accord-
ing to equation (9.2) combined with the answer feature extraction according to
equation (9.3) generalises best to the unseen section of the corpus. We believe
the reason that the structured alignment does not work better is that the align-
ment is between one user utterance and one sentence in the retrieved document.
In order to work well, more context should have been taken into account.

We also tried radial and neural kernels instead of the polynomial kernel, but
found problems with both of them. The radial basis kernels showed excellent
accuracy and precision, but had recall below 30% for underrepresented classes.
The training of SVMs with neural kernels would not converge, even when
setting the parameter C to unusually large values.

Table 3. Accuracy of the classifiers.

Classifiers Context (%)
Eq. (9.1) Eq. (9.2)

One-vs-all 76.3 75.3

Multi-class 84.2 80.4

Alignment 62.2 61.4
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In initial experiments, we tried to classify the structures resulting from the
alignments as shown in Figures 6 and 7. While the performance on the training
set was around 90%, performance on previously unseen data was not much
better than chance. This suggests that generalisation could not take place. We
hypothesize that this is due to the fact that the number of nodes and edges in
the linguistic structures of question and answer outweighs the number of nodes
and edges of the alignment. In other words, we suspect that overfitting occurs,
and therefore the classifier does not generalise well. One way to overcome this
problem is to remove some of the information from the alignment structures.
We do this by removing all word related information, such as part of speech tag
and semantic information. Yet, the simpler bag-of-words (or bag-of-concept,
more appropriately) approach still outperforms the structured approach.

Transcriptions of dialogues between naive users and the end-to-end system
indicates that the proposed system works well as long as keywords added to the
discourse are aligned with the information the user is interested in. However,
if the instance-based generation algorithm chooses a keyword in its prompt to
the user that is not representative for the information the user is interested in,
there is a danger that the user repeats that keyword (in the simplest case saying
something like “No, I did not mean X”. Subsequently, this keyword will be
introduced into the dialogue state. This, in turn, will rank those texts higher
that contain this keyword.

7. Summary and Future Work
In this chapter, we presented dialogue management techniques for interactive
restrictive domain question answering systems. We proposed to learn classi-
fiers for dialogue management based on representations extracted from dia-
logue context and retrieved documents from the question answering machines.

The main problem when going from task-oriented dialogue systems to in-
teractive restricted domain question answering systems is that the lack of task
structure prohibits making simplifying assumptions as in task-oriented dia-
logue systems. In order to address this issue, we proposed a solution that con-
sists of two parts: First, we use representations based on keywords extracted
from the user utterances and concepts extracted from an ontology. These rep-
resentations can be seen as a generalisation of the slot/filler representations
Future work includes evaluation with new users as opposed to trying to predict
the actions in an existing dialogue corpus. Second, we use machine learning to
learn the dialogue management function. We are currently preparing an evalua-
tion with users to test the dialogue classification under realistic circumstances.
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Abstract We describe a generic set of tools for representing, annotating, and analysing
multi-party discourse, including: an ontology of multimodal discourse, a pro-
gramming interface for that ontology, and NOMOS – a flexible and extensible
toolkit for browsing and annotating discourse. We describe applications built us-
ing the NOMOS framework to facilitate a real annotation task, as well as for
visualising and adjusting features for machine learning tasks. We then present a
set of hierarchical topic segmentations and action item subdialogues collected
over 56 meetings from the ICSI and ISL meeting corpora using our tools. These
annotations are designed to support research towards automatic meeting under-
standing.

Keywords: Topic segmentation; action items; annotation; media; discourse; dialogue;
meetings; NOMOS

1. Introduction
The automatic processing and understanding of multi-party meetings has
emerged recently as a major area of research. Technically, meetings present
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many interesting multidisciplinary challenges; for instance, they have multiple
interacting participants and contain spontaneous speech, movement, and ges-
ture. Commercially, they are interesting as they often involve important deci-
sions, yet they are usually poorly documented. Several major projects studying
meetings are underway, including Mapping Meetings,1 M4,2 AMI,3 ISL,4

IM2,5 and CHIL.6

In this discussion, we view meetings from the perspective of building meet-
ing understanding components which comprise part of the cognitive personal
office assistant being designed for the CALO project.7 The types of assistance
envisioned include summarising the meeting, actively bringing attention to rel-
evant documents, and helping the collaborative creation of documents in the
course of the meeting. Additionally, the content of meetings will be presented
in a meeting browser which will allow a user to browse a top-level summary,
locate pertinent portions, and “drill down” into more detailed structure as de-
sired.

In order to summarise meeting structure in a useful way, it is therefore crit-
ical to first understand what sort of structure best assists humans in brows-
ing or reviewing the contents of meetings. With this in mind, we describe an
application-driven approach undertaken to annotate a set of meetings with rel-
atively coarse structural annotations with the hopes of spurring development
of automatic structural segmentation algorithms in this difficult domain. This
approach encompasses both the development of a novel framework for ma-
nipulating and annotating recordings of multiparty discourse, and annotations
performed on meeting corpora.

In this chapter, we first describe the architecture developed in the course of
the project for both collecting annotations over, and performing research tasks
involving, multi-party discourse. While this architecture was developed in the
context of working with meetings, it is more generally applicable to multi-
party discourse. In particular, we discuss an ontology of multimodal discourse,
along with its corresponding ontology programming interface. We then present
NOMOS, an audiovisual toolkit built on top of this programming interface.
NOMOS, in turn, was used to develop a tool used to perform annotations, as
well as several other tools designed for manipulating meetings.

We then discuss how the tools developed were used to create a new set
of annotations of the ICSI (Janin et al., 2003) and ISL (Burger et al., 2002)

1http://labrosa.ee.columbia.edu/mapmeet/.
2http://www.m4project.org.
3http://www.amiproject.org.
4http://penance.is.cs.cmu.edu/meeting room/.
5http://diuf.unifr.ch/im2/.
6http://chil.server.de/.
7http://www.ai.sri.com/project/CALO.
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meeting corpora that mark hierarchical topic segmentation and action items.
Finally, we describe the characteristics of these annotations, and analyse inter-
annotator agreement.

The annotations and tools described in this chapter, as well as technical
documentation, can be downloaded from the World Wide Web at http://godel.
stanford.edu under Software.

2. Architecture for Meeting Annotation,
Research, and Browsing

We begin our discussion by describing the flexible architecture we have de-
veloped for working with multi-party discourse. The architecture has grown
out of three major threads of research: (1) performing and viewing annota-
tions of discourse, (2) working toward automatic discourse segmentation, and
(3) integrating our work with other components comprising a digital office
assistant – including components responsible for vision, gesture, and high-
level reasoning. In this section, we discuss a multimodal discourse ontology
(MMDO) which has resulted from these efforts, as well as NOMOS – an au-
diovisual toolkit for manipulating multi-party discourse and annotations of that
discourse.

2.1 MMDO and Ontology Programming
Interface

In order to generically represent both corpora and annotations of those cor-
pora, we have devised a multimodal discourse ontology (MMDO). The MMDO
is fully described in Niekrasz et al. (2005) and Niekrasz and Purver (2006);
here, we give a brief overview focusing on how the ontological framework al-
lows us to unify several research threads. In accordance with our principles
of application-driven annotations, the MMDO is a suitable representation on
top of which to build agents capable of integrating with others into a digital
personal assistant.

The MMDO follows recent trends in information technology which put
semantics in the limelight of data-driven research, the most significant being
the Semantic Web (Berners-Lee et al., 2001) which brings ontology and knowl-
edge engineering in contact with the World Wide Web. Following this trend,
research in annotation of both linguistic and multimedia resources has begun
to shift away from the paradigm of markup toward that of semantic annotation
(Farrar, 2007; Geurts et al., 2003). While the former are commonly schema-
tised in a manner similar to an XML DTD, the latter is grounded in a formal
ontology, providing an expressive semantics to the annotation and allowing
inference.
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Figure 1. Architecture Diagram: The OPI Generator produces an Ontology Programming In-
terface through which applications can manipulate a knowledge base constrained by an arbitrary
ontology. NOMOS is built on top of an extensible OPI generated from an ontology of multimo-
dal discourse. NOMOS, in turn, serves as the audiovisual backbone of several tools, shown at
the top. The OPI is also utilised by the feature extractor, which produces features for automatic
topic segmentation.

The MMDO can be found as part of the software architecture in Figure 1.
At the core is a general upper ontology called the Component Library
(Barker et al., 2001), the core ontology used in the CALO project. This pro-
vides the most abstract level of semantics to the annotation schema such as
events, entities, and roles. Building from these general concepts, we have de-
signed an ontology of multimodal discourse. This layer encodes the concepts
important to understanding discourse, such as utterances, words, speaking
events, writing events, linguistic constituents, gesturing, etc. In its design, we
place an emphasis on unifying our multiple research threads (e.g. human–
computer dialogue, open-domain parsing, meeting modelling, and lexical
semantics) both theoretically and pragmatically where possible, as well as on
capturing as many of the commonly-held concepts in natural language research
as possible.

Using this ontology, we create a custom-made Java API – which we call an
ontology programming interface (OPI) – via an algorithm which encodes the
hypernymic relations in the ontology as Java class inheritance and encodes the
class relations (attributes) as Java methods. The OPI is written to interface with
a triple-store database back-end, which supports persistent access to annota-
tions, currently implemented using the Jena Semantic Framework. Kronobase
is a layer we have developed for meta-annotation, which allows the recording
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of important aspects of annotation, including who performed it, when it was
performed, and on which resources (other annotations) it is dependent.

2.2 NOMOS: An Audiovisual Toolkit for Meeting
Annotation, Research, and Browsing

Leveraging the OPI is NOMOS,8 a generic audiovisual toolkit for displaying
and playing recorded discourses (or, in fact, any type of media recording),
and for manipulating and visualising associated annotations. NOMOS provides
functionality for graphically displaying information stored in the annotation
knowledge base, thus creating a generic platform in which any discourse can be
loaded so long as it can be converted to the appropriate format. Moreover, since
NOMOS is built using the OPI infrastructure, it can easily leverage the same set
of underlying ontologies used internally by the CALO systems, including the
MMDO. This makes it easy to use NOMOS as a platform underlying end-user
components of the CALO systems.

NOMOS is a highly customisable environment, serving as the primary ingre-
dient in building the annotation-related software tools discussed in Section 3.
In particular, both the Feature Visualiser and the Topic and Action Item Anno-
tation Tool are composed entirely of a set of plugins and templates developed
within the NOMOS framework; screenshots of these tools can be found in Fig-
ures 5 and 6 later in this chapter. The latter is a tool for annotators, while the
former is targeted at researchers. In addition, NOMOS serves as the basis for
the Meeting Browser tool currently under development, with which end-users
of the CALO systems will be able to browse through an automatically anno-
tated meeting. Figure 1 shows the architectural hierarchy contributing to each
piece of software. NOMOS is implemented entirely in Java, as are the tools
built on top of it. Each has been used extensively under Windows, OS X, and
Linux.

The rest of this section describes the core components which make up the
NOMOS toolkit.

2.2.1 Query editor. Since NOMOS is built on top of the OPI, all
annotations are stored in a knowledge base accessible via the powerful pro-
gramming interface exposed by the OPI. While this is an excellent interface
for software development experts, it is not necessarily suitable for annotators
or end-users of other applications built on top of NOMOS. In order to provide
an intuitive mechanism for users to interact with this powerful programming
tool, NOMOS provides a graphical query editor. The query editor provides a
way for users to construct and edit queries, which are an intuitive means of ex-

8NOMOS, is an abbreviation for “anNOtation of Media with Ontological Structure”.
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Figure 2. The graphical Query Editor.

tracting sets of annotations from the knowledge base – much in the same way
that SQL queries are used to extract datasets from a database. For instance, as
Figure 2 demonstrates, it is a simple matter to construct a query which extracts
all of the major topic annotations of a particular meeting. Queries can be exe-
cuted by NOMOS, with the results typically displayed on tracks, as described
below. By providing such a query representation language, NOMOS itself can
be, for the most part, agnostic with regard to the underlying ontology used to
represent the annotations.

2.2.2 Tracks. At the heart of the visual representation of NOMOS
is the notion of a track. Tracks appear in a vertical stack in the centre of the
display, and can be clearly seen in Figures 5 and 6. The x-axis of each track is
measured in time: the start and end of a track correspond to the start and end
of the discourse being displayed. A track, then, is appropriate for displaying
annotations which are rooted at a particular time in the discourse, for instance:
transcripts, topic segments, gestures, or groupings of utterances into linguistic
units. NOMOS provides default functionality for displaying the properties of
time-based annotations as text; in addition, there is extensive plugin support
so that developers are free to write custom plugins for graphically displaying
annotations in whatever means is most appropriate. This makes it possible to
develop highly customised applications, such as the Topic and Action Item An-
notation Tool discussed in the next section. Finally, users can easily zoom in
and out on tracks.

2.2.3 Tabbed panels. In addition to tracks, NOMOS also provides
a generic mechanism for plugins to represent annotations graphically in any
appropriate format as a panel. Any number of panels can be shown at once,
each appearing as a tab which can be clicked. Like a track, a panel displays a
set of annotations retrieved by executing a particular query. Unlike a track, a
panel need not represent annotations temporally. Thus, panels serve primarily
as a means of representing entities not associated with one particular time in
a discourse – a typical example is the set of Participants of a particular dis-
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Figure 3. An example of a tree panel showing the results of a query.

course. The plugin infrastructure allows developers to create customised ways
of displaying and editing entities with a panel. Distributed as part of NOMOS
are core plugins which visualise any set of entities as a tree, where parent/child
relationships denote that a Relation exists among entities; Figure 3 shows an
example of such a tree. A tree display is particularly appropriate for non-time-
based annotations, often in the form of persistent annotations. Persistent anno-
tations are ones which “persist” across multiple discourses (or, more generally,
across multiple media files); for instance, a list of discourse references might
persist across several discourses, as the same entity might be referred to in the
course of multiple discourses.

2.2.4 Templates. In order to customise how a particular set of an-
notations are displayed, NOMOS provides a mechanism for creating and edit-
ing templates. A template consists of the following:

A set of queries to be executed

The types of tracks to be used to display the results of each query –
where the type is determined by the type of plugins used to display the
track itself and the entities on each track

The set of plugins used to display annotations as tabbed panels

Values for configuration parameters for each plugin – used to further
customise behaviour according to plugin-specific parameters

Given this set of information, templates define how the user will view the an-
notations: the same set of annotations can be visualised in quite different ways,
depending on the subset of the annotations defined through the queries and the
plugins used to display the results of these queries.

2.2.5 Transcription. Capabilities for both displaying and editing
transcripts are packaged as core NOMOS plugins, as these capabilities are de-
sired in many annotation tasks. In the GUI, each conversational participant
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is assigned a track, in which the transcribed utterances (or speech recogni-
tion hypotheses) of that participant are displayed – moving from left to right
moves along the time axis. In the screenshot shown in Figure 5, for example,
each of the top seven horizontal tracks are dedicated to the transcripts of the
seven meeting participants. Each small box on a track shows the transcrip-
tion of a single utterance, where the left- and right-hand sides of each box are
time-aligned with the start and stop time of the utterance. Zooming in and out
allows the user to adjust how much of the transcript is viewed at once; this
makes it easy to move from a microscopic view of the discourse to a global
one, and back. For instance, while Figure 5 displays about a minute of dis-
course, Figure 6 shows about an hour.

2.2.6 Creating and editing annotations. The plugin architec-
ture implemented in NOMOS allows tool designers to create arbitrary mecha-
nisms for users to interact with, modify, and create new annotations – the Topic
and Action Item Annotation Tool described below provides an excellent exam-
ple of how plugins can lead to such specialisation. However, many annotation
tasks share a common flavour, so NOMOS includes a core set of capabilities
for defining new sets of annotations, as well as modifying existing sets. Us-
ing the core architecture, time-dependent annotations (or annotations relating
time-based entities to one another) are typically made on additional tracks; for
example, in a gesture-annotation task, gestures might be shown as events on a
track so that the start and end time of each gesture can be pinpointed. The rela-
tion of each gesture to a particular utterance can then be annotated via drag and

(a) Editing an entity’s properties – the potential
values for each slot are constrained by ontologi-
cal constraints over the current domain.

(b) A tooltip brought up by hovering the mouse
over an entity allows for quick interrogation.

Figure 4. Screenshots of NOMOS capabilities for viewing and editing entities.
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drop: users can drag one entity on to another to set a particular entity as a value
for a particular slot in another entity. In addition, any entity can be interrogated
by bringing up a dialog box like the one shown in Figure 4(a) which shows the
slots and values that define that entity, allowing users to directly modify the
knowledge base. In both mechanisms for relating entities to each other, on-
tological constraints are enforced by NOMOS. For example, if the value of a
particular slot can only be of a certain type, NOMOS will use tools associated
with the OPI to do subclass inference and only allow entities of that type (or
subtypes of that type) to be set as the value of a particular slot. Similarly, when
editing the properties of a particular entity, only valid slot-fillers in the current
domain are presented as options to fill that slot; for example, when choosing
the value for a Participant slot on an utterance, an annotator will only be able
to choose an available entity of type Person, since this slot can only take val-
ues of this type. These inference capabilities mean that highly customised tools
can be developed quickly with little or no programming; instead, ontological
constraints directly “customise” the tool.

2.2.7 Audio and video. A red vertical line overlaying the tracks
represents the audio and/or video cursor. It indicates the current position of
playback: as playback proceeds, it moves from left to right and the track dis-
play is automatically scrolled. Buttons along the bottom can be used to pause
playback, or skip forward and back a few seconds – allowing users to quickly
replay a bit of the conversation, or quickly fast forward through parts of it. The
focus button is used to centre the display around the current media location;
conversely, clicking in a particular location in a track will move the cursor to
that location. An arbitrary number of audio and video streams can be synchro-
nised at once; for instance, a video of a discourse can be played back with a
separate audio track for each participant mixed together in real time.

2.2.8 Annotation comparison capabilities. It is often quite
important to be able to see each annotator’s annotations of a single discourse
side by side. Built into NOMOS is the capability to partition a set of annotations
based on the annotator who created each annotation, laying out each annota-
tor’s contributions on a separate track. This capability facilitates easy com-
parison of multiple annotations made to the same discourse, by stacking each
distinct set of annotations on tracks one above another. When comparing topic
segmentations, for example, loading each set of annotations one above another
and then zooming out allows annotators to get a rough idea of where areas
of disagreement and agreement lie; these areas can then be zoomed in on for
more detailed discussion. The same techniques can be used to compare the out-
put of annotations automatically generated by, for instance, machine learning
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techniques. Visually comparing similarities and differences lends powerful
(though perhaps anecdotal) insight into differences among algorithms.

2.3 Comparison to Similar Efforts
The architecture described in this section provides similar functionality to
toolkits in development elsewhere. Of particular note, is the NITE XML
Toolkit (Carletta et al., 2004; Carletta and Kilgour, 2004), which is a generic
toolkit for performing linguistic annotation tasks. At a basic audiovisual level,
NITE provides fairly similar functionality to the NOMOS architecture de-
scribed in this chapter: synchronised audio and video playback and a plugin
architecture. A key difference in the visual display is that by default transcripts
in NOMOS are displayed along tracks, while in the NITE system they are
presented as linearised text. While both approaches have their advantages
in different applications, the tracked presentation provides the most natural
means for emphasising overlap, a feature of multiparty discourse we believe
is often ignored in natural language processing applications.

Greater differences between NOMOS and NITE arise as a result of funda-
mental differences in the way the two represent the underlying annotations.
The NOMOS architecture is centred around semantic annotation, which re-
sults in annotations made according to particular schemata, and a uniform user
interface built around editing the fields of entities and their relationships to
one another. Moreover, the semantic framework made use of by NOMOS is
meant to be interoperable with high level reasoning components currently in
development, and annotations are stored in the standard OWL/RDF triples for-
mat. Other knowledge-base tools can therefore easily manipulate them, and it
is straightforward to transfer knowledge to agents capable of reasoning. NITE,
on the other hand, stores all annotations as XML.

Finally, our framework stands out in that the OPI is “compiled” from the
annotation schema. The availability of this Java API makes it straightforward
to manipulate and analyse annotations, as we have done in Section 5. The OPI
makes it possible to write scripts which are forced at compile-time to conform
to the annotation schema.

3. Tools
In this section, we describe several distinct tools we have developed using
NOMOS as the core platform, backed by the multimodal discourse ontology
and its associated ontology programming interface. All of the tools described
in this section are made up entirely of a set of NOMOS plugins, laid out using
the standard template mechanism described in the previous section.

The Topic and Action Item Annotation Tool was developed for the use of
the annotators performing the annotations which will be described later in this
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chapter. The Feature Visualiser is a tool we have developed in the course of our
preliminary automatic segmentation work. And the Meeting Browser is a tool
currently under development which is intended to be an end-user component of
the CALO digital personal office assistant. Taken together, these tools demon-
strate the flexibility of the architecture we have developed, showing how it can
play a cross-cutting role across the tasks of meeting annotation, browsing, and
research.

3.1 Topic and Action Item Annotation Tool
A screenshot of the Topic and Action Item Annotation Tool is shown in
Figure 5. It leverages the full features of NOMOS, complementing them via
plugins to allow for additional annotation capabilities specialised to annotating
topic segments and action items. The tool is an excellent example of how the
generic capabilities provided by NOMOS can be further specialised via plugins
to make performing a specific set of annotations particularly efficient.

We briefly note here features developed in the tool (as well as in NOMOS
in general) which particularly decrease the high cognitive load demanded by
the annotation task. Notably, key capabilities revolve around simultaneously
providing global and local insight into the meeting and annotations, as well as
the capability to easily revise draft annotations.

Topic and action items (see Section 4) are annotated via context menus avail-
able on the tracks displaying the utterance of the discourse. Specialised tabbed
panels (see above) show a topic hierarchy and a list of action items (shown in

Figure 5. Screenshot of the Topic and Action Item Annotation Tool.
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the upper left of Figure 5), giving an overview of the annotations at a global
level. During the pilot period of annotation, it became clear how important
it was to be able to easily modify annotations after making an initial rough
pass through a discourse. As a result, capabilities for renaming and deleting
both topics and action items exist, as well as the ability to promote, demote,
or merge major and minor topics as appropriate. These capabilities provide
single-click shortcuts to what would otherwise be somewhat involved tasks in
the default NOMOS framework. In addition, “reminders” can be inserted at
particular time points, allowing annotators to make notes to refer back to in a
subsequent pass.

Specialised track plugins provide a task-specific visualisation of both topic
segmentations and action items. Major topics are signalled graphically on the
tracks containing the utterances by alternating the background colour. The mi-
nor breaks are indicated by the narrower bands of alternating light and dark
gray centred vertically in the track. For instance, in Figure 5 there are two ma-
jor topics visible in the time slice shown; in addition, the second major topic
is a parent to one visible child minor topic. Brief descriptions assigned to each
major and minor topic are displayed in each track. Finally, the entire hierarchy
of topics can be shown by clicking on the appropriate tab in the upper left hand
corner; clicking on any topic in this list will shift the track display to the start
of that topic.

An example of annotations for action items is also displayed in Figure 5.
Several utterances by the top and bottom speaker in the first major topic have
been shaded the same colour to indicate that they are related to the same action
item; similarly, an utterance on the top right has also been highlighted a differ-
ent colour to indicate it is part of a different action item. Moreover, the panel
in the upper left corner lists all of the action items marked in the entire dis-
course. A brief description of each appears, followed below by the transcript
of each utterance comprising that action item. Clicking on an utterance will
scroll the track display to show that utterance. Each action item is assigned a
colour, shown both in the summary in the upper right and in the highlighted
utterances in the display.

3.2 Feature Visualiser
We have developed a generic Feature Extractor and Feature Visualiser using
the ontology programming interface and NOMOS audiovisual toolkit, as the
architecture diagram in Figure 1 shows. We mean feature here in the sense
of features which can be computed from discourse as input to machine learn-
ing algorithms for classification tasks such as topic segmentation. The Fea-
ture Extractor is simply a set of Java classes which provide core functionality
for processing discourse, as represented by the OPI. Functionalities include:
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Figure 6. Screenshot of the Feature Visualiser.

extracting sets of utterances in a given time window, turning these utterances
into bags of words per speaker, smoothing feature values, and calculating their
derivatives. Moreover, generic tools are provided for iterating over discourses,
processing them, and extracting sets of feature values at regular intervals which
can then be piped directly into learners like decision trees, neural nets or sup-
port vector machines.

The Feature Visualiser is built on top of the extraction architecture, using a
set of plugins to create the GUI using NOMOS. It displays calculated feature
values alongside an annotated discourse, as shown in Figure 6. Moreover, as
the popup window in Figure 6 shows, it allows the user to dynamically modify
each feature’s parameters (e.g. window size, smoothing, or other feature-
specific parameters) and immediately observe the results. We have found the
visualiser to be invaluable in debugging algorithms for feature extractors,
tweaking parameter values, and hypothesizing new, interesting features.

3.3 Meeting Browser
We are currently developing a Meeting Browser tool, which will sit on top
of both the audiovisual toolkit and the feature extractor. The eventual de-
velopment of this tool is the motivation that has driven our annotations and
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associated schema. The browser is meant to allow users to “drill down” through
the structure of the meeting, easily pinpointing segments of interest.

4. Annotation Motivations and Schema
We now turn to describing an annotation task performed using the Topic and
Action Item Annotation Tool described in the previous section, providing a real
world example of both the sort of annotations which may be performed in the
NOMOS architecture, and the type of analyses which are straightforward to
perform using the OPI compiled from the annotation schema. We focus on two
types of discourse structure annotations. The first, topic segmentation, breaks
the discourse up into a (hierarchical) sequence of topics. The second, action
item subdialogues, marks particular utterances as being relevant to the discus-
sion or assignment of action items. In this section, we describe our motivations
in studying these phenomena, related work, and the iterative process by which
we refined an application-driven annotation schema.

We worked with the ICSI Meeting corpus (Janin et al., 2003) and the
ISL Meeting Corpus (Burger et al., 2002) because both contain high-quality
close-talking microphone recordings of conversational speech in a meeting
environment, as well as word-level transcriptions and utterance-level timing
information. We focused mainly on the ICSI corpus because its contents most
closely matched our task of processing fairly informal, office-style meetings.
In addition, extensive annotations have already been completed on the ICSI
corpus, including: dialogue acts (Shriberg et al., 2004), “hot spots” (Wrede
and Shriberg, 2003), and some work on topic segmentation (Galley et al.,
2003; Carletta and Kilgour, 2004).

4.1 Topic Segmentations
A significant challenge in spoken discourse segmentation is providing a con-
crete definition of the problem – the desired concepts of both topic and seg-
mentation. To that end, we first briefly discuss the conceptualisations – and
motivations behind those conceptualisations – that have arisen in the related
fields of segmenting text and monologue. We then discuss previous work in
segmenting discourse, our own motivations, and finally outline an annotation
schema derived from these motivations.

4.1.1 Text and monologues. The segmenting of text documents
is often motivated by information retrieval tasks – for instance, so that a single
appropriate segment can be returned matching a query. In some cases, topic
boundaries are hand-annotated, as in Hearst (1994). However, topic bound-
aries are often artificially created by concatenating multiple articles together,
as in Galley et al. (2003) and Choi (2000). Moreover, since text is written
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linearly, usually with clearly punctuated boundaries in the form of sentences
and paragraphs, it is natural to assume that topic boundaries will occur at
such places. Thus, such “natural” boundaries both define and limit the search
space. In addition to text, there has been much research in segmenting non-
conversational speech; essentially monologues or series of monologues. For
example, much work has been done on automatically segmenting broadcast
news (e.g. Tür et al., 2001; Beeferman et al., 1999; Allan et al., 1998).

The tasks of segmenting text and monologue are similar in that both tend to
have fairly well defined topic structure. In the case of artificial text corpora cre-
ated through concatenation, topic boundaries can be objectively defined over
the concatenated article boundaries. News broadcasts tend to consist primar-
ily of scripted speech – with little spontaneity – produced by highly prac-
ticed professionals (though some work has also been done on more sponta-
neous monologues (see Passonneau and Litman, 1997). Topic boundaries in
news broadcasts are designed to be obvious, with unambiguous shifts from
one story to the next. In both domains, automatic segmentation algorithms
tend to rely primarily on lexical co-occurrence statistics to calculate a mea-
sure of lexical cohesion between chunks of text (Hearst, 1994; Hearst, 1997).
In the case of monologue, prosodic cues are often utilised as well (Tür et al.,
2001; Hirschberg and Nakatani, 1998).

4.1.2 Discourse. When turning to spontaneous discourse, most pre-
vious work has followed this text/monologue approach: for example, when
Galley et al. (2003) annotated 25 meetings in the ICSI Meeting corpus for
topics, the discourse was represented linearly as a series of non-overlapping
utterances, topics were represented as a linear sequence of segments, and topic
boundaries were allowed only at speaker changes. Although we are aware of
one project in which hierarchical topic annotations are being used (on the ICSI
corpus using the NITE XML toolkit (Carletta and Kilgour, 2004)), no annota-
tions are yet publicly available.

Rather than adapting the task of discourse segmentation to make it look
more like a text segmentation task, we took an application-driven approach
to segmenting discourse. Our motivation for topic segmentation was to en-
able broad understanding of a discourse, providing a coarse summary seg-
mentation for broad-perspective user browsing capabilities, and allowing for
selective “drill-down” and replay; for more detailed discussion of the utility
of high-level segmentations, see Banerjee et al. (2005). We therefore wanted
to collect annotations which can be leveraged specifically to provide such ca-
pabilities for a digital personal office assistant. Specifically, we instructed the
annotators to look at the problem of providing a topic segmentation from the
perspective of utility: if they were reviewing a meeting they might not have
attended, what segmentation would help them quickly “drill down” to por-
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tions they might be particularly interested in reviewing. While a bit vague, this
description of the task avoids biasing the annotators toward relying on partic-
ular discourse phenomena or restricting them to particular boundary locations;
Ries (2001) argues that such an application-driven approach, with linguisti-
cally naive coders, may help best represent end-users of meeting browser sys-
tems.

This application-driven approach proved difficult at first, resulting in low
inter-annotator agreement among the two undergraduate annotators in the first
five meetings that were annotated. However, through discussions of the anno-
tations (often using annotation comparison capabilities discussed in Section 2)
– discussions in which no actual concrete annotation criteria for what always
must constitute a topic break were discussed – an acceptable level of inter-
annotator agreement was reached for the majority of meetings (see Section 5).
Agreement results eventually reached a plateau, at which point further discus-
sion of the annotation guidelines was terminated. At this point, guidelines were
then drawn summarising the result of these discussion (see Gruenstein et al.,
2004). The resulting schema is discussed below.

4.1.3 Topic segmentation schema. Meetings were segmented
according to a two-level hierarchical segmentation schema. In the top (major)
level of the hierarchy, the entire meeting is wholly and contiguously seg-
mented, where segment boundaries symbolise highly salient breaks in dis-
course structure and/or distinguish parts of the discourse between which there
is an obvious difference in subject matter. In the second (minor) level of the
schema, major segments are optionally subsegmented without a requirement
for contiguity, but with overlapping segments forbidden. Minor segments
signify either a temporary digression or a more focused discussion of the
subject matter, while still remaining directly relevant to the encompassing ma-
jor segment. Our pilot annotation work indicated that restricting topic breaks
to speaker changes was an unnatural restriction. Instead, our schema allows
topics to start and end at any point in the discourse, even in the middle of a
single speaker’s utterance. Some ramifications of this choice are discussed in
Section 5. We note that while our choice to allow topic breaks at any time
point may be “permissive”, it may in fact not be permissive enough when
considering multiparty discourse. In such discourses, it may sometimes be the
case that while some speakers have moved along to a new topic, others may
still linger on an old topic; or, a few speakers may discuss one topic amongst
themselves while others discuss another. While such phenomena are interest-
ing, we felt that given the application-driven nature of our annotations (with
the application being a meeting reviewer tool), capturing such granularity was
not necessary. Figure 7 depicts a meeting segmented according to the schema,



Meeting Structure Annotation 263

Figure 7. A sample hierarchical meeting segmentation.

with vertical lines separating major topics, and shaded areas representing
minor topics.

Annotators also gave brief descriptive names to topics, though no standards
were set as to the format or content of the assigned names, with the exception
of the following reserved topic names:

AGENDA: the portion of the meeting in which the agenda is presented
and discussed
INTRO: speech before the meeting “officially” begins (appears in every
meeting, though may have zero length)
END: speech after the meeting “officially” ends (appears in every meet-
ing, though may have zero length)
TECHNICAL DIFFICULTIES: a period in which there are technical dif-
ficulties with recording equipment
DIGITS: the digits task in the ICSI meeting corpus, see (Janin et al.,
2003)

Except for AGENDA, the reserved names simply serve the purpose of high-
lighting portions of the recording which might not be considered part of the
meeting proper; below we discuss how they play a role in defining a reference
segmentation. In addition, if a new topic is a continuation of a discussion of a
previous topic left off earlier, the convention is used that the same descriptive
text is given for both topics – implicitly linking them.

4.2 Action Items
Though the focus of the annotation work was hierarchical topic segmentation,
annotators also marked action items. Previously, we have shown how simple
task-assignment charts can be inferred from highly scripted, multimodal meet-
ings (Kaiser et al., 2004). In moving to free-form meetings, identifying deci-
sion points like action items follows as a natural first step in extending this
work.

For the purposes of annotation, we define an action item loosely as a task
which is discussed in the meeting and then assigned to a participant (or partic-
ipants) to complete at some point after the completion of the meeting. In our
schema, action items are defined as sets of utterances, rather than start and end
times: this is possible because action items are usually discussed only briefly,
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so it is feasible for an annotator to pinpoint particular utterances in which the
discussion occurred. Moreover, it is useful to identify as specifically as pos-
sible the utterances in which action items were discussed, as not all speech
within a time window may be relevant due to the high levels of speech overlap
in multi-party conversations.

Note also that while identifying the general regions of action item discussion
could be useful for logging and browsing by a user, it is only by identifying the
relevant utterances themselves that we will be able to move towards automatic
interpretation of the action items, where interpretation might include: identify-
ing the person it has been assigned to, its deadline and the information about
the task it involves. With this goal in mind, we plan future annotation passes
to further classify each utterance into specific categories such as task, deadline
and person assignment. Furthermore, it may be useful to mark information par-
ticular to the task, such as: the person it has been assigned to, its deadline, and
its relation to other tasks.

5. Analysis of Collected Annotations
We collected annotations for a total of 65 meetings, however 9 of those meet-
ings were not annotated by both annotators, were annotated during our prelimi-
nary annotation sessions, or had other problems. Excluding this set of meetings
leaves a total of 56 annotated meetings: 40 meetings from the ICSI corpus and
16 from the ISL corpus, totalling 45.9 hours. In this section, we provide a
statistical analysis of our annotations of this set, along with some more quali-
tative observations. We describe multiple algorithms which have been applied
to the data to make our analysis possible. We also provide an analysis of inter-
annotator agreement using multiple metrics. Last, we compare our annotations
to other similar datasets.

5.1 Pre-Processing
Every meeting recording has a beginning and end which do not actually con-
tain meeting dialogue and which are not relevant to an analysis of topic struc-
ture. Before analysis, we therefore perform pre-processing of our annotations
to produce a segmentation that does not contain these sections of the discourse.
Because our annotators were asked to annotate these special cases, our pre-
processing algorithm simply takes the union of the set of INTRO and END
segments from both annotators and removes those portions of the discourse
from both annotations. All the analyses presented below were done after this
pre-processing step. While pre-processing of DIGITS and TECHNICAL DIF-
FICULTIES segments is necessary for training of topic detection algorithms,
these segment types were not removed prior to the analysis presented in this
section.
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5.2 Segment and Break Classification
While most text segmentation methods constrain the number of possible seg-
mentations by specifying a finite set of discrete locations where segment
boundaries may occur (most often at sentence boundaries), our annotators
were free to assign boundaries at any time during the discourse. Unfortunately,
this complicates our use of standard evaluation metrics, and it does not suit it-
erative automatic discourse segmentation algorithms which operate at discrete
intervals of time.

To overcome these obstacles we transform our annotations into a set of clas-
sifications in two ways, arriving at what we call a segment classification and
a break classification. For each of the two, the first step is to divide the dis-
course into temporal units based on a set of possible break locations, e.g. a set
of evenly spaced temporal values, utterance start times, or speaker changes.
We use evenly spaced intervals of 20 seconds in our analysis.

In the case of evenly spaced windows, a discourse d is evenly divided into
i = |d|/n non-overlapping contiguous temporal intervals of length n, with the
last window realizing any remainder and possibly being cut short. For the seg-
ment classification, each temporal unit is classified as to which topic segment it
belongs. Temporal units which contain segment boundaries are classified sim-
ply by determining in which half of the unit the annotated boundary lies. If it
lies in the later half, the unit is classified as belonging to the previous topic
segment. For the earlier half, it is classified with the following topic segment.
This produces segment boundaries which are between windows.

For break classification, each unit is classified as to whether or not it con-
tains a topic boundary. This latter interpretation is essential for making use
of the Kappa agreement statistic when the number of topic segments is un-
constrained, as it is here. This may be transformed back into a set of segment
boundaries by placing boundaries at the centre of windows which have been
classified as containing a topic break.

5.3 Reference Segmentation
Another essential processing step is to produce a reference segmentation from
our individual annotations. This is important to providing a comparison to
other annotations such as those used in Galley et al. (2003), and for train-
ing automatic segmentation algorithms. Galley et al. (2003) create a reference
segmentation by establishing sets of topic boundaries based on co-occurrence
between annotations within 20 seconds. They then choose those sets which
have been annotated by a majority and establish a boundary at each set’s me-
dian time value.

In our current method, we employ the same strategy of discarding the minor
segments. However, we believe benefit can be derived using our second tier of
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segmentations as there are many cases where topic boundaries are annotated
as a major shift by one annotator and as a minor shift by the other, suggesting
some level of agreement that should be used. Also a second tier of segmenta-
tion in an automatic segmentation application would likely be useful for more
localised “drill-down”. Therefore, we do not believe this strategy should be
a hard and fast rule: we provide our segmentations as individual annotations
without establishing a defined reference. We will likely employ different strate-
gies in the future for establishing a reference segmentation which incorporates
minor boundaries.

5.4 Evaluating Inter-Annotator Agreement
In this section we present the results of evaluating agreement between our two
annotators and compare multiple agreement metrics. The results show variance
among meetings, suggesting that the topic segmentation task may be ill-formed
for certain classes of meetings.

The current standard metric for measuring inter-annotator agreement in
classification tasks is the kappa statistic (K) (Carletta, 1996). While K is a
good measure of how well annotators can agree on pinpointing topic breaks
at time points, it does not accommodate near-miss break assignments in
which annotators label different nearby time points as topic breaks. For the
evaluation of segmentation algorithms specifically, two metrics are most com-
monly used: Pk (Beeferman et al., 1999) and WindowDiff (WD) (Pevzner
and Hearst, 2002). These were designed principally to evaluate text segmen-
tation algorithms that operate at sentence boundaries, but can be applied to
continuous-time segmentations through the use of windowing. Pk accommo-
dates near-miss labellings by considering how likely two time points are to be
assigned to the same topic, while WD further refines this notion by measuring
the difference in number of topic breaks between two time points. Each metric
provides a reasonable, though different, evaluation of inter-annotator agree-
ment. Results given in Table 1 and Figure 8 show a high degree of correlation
among them.

Table 1. Mean/median agreement on topic segmentations.

Major topics Major and minor topics

WD 28.9% / 29.2% 32.7% / 33.8%
Pk 22.6% / 22.5% 26.5% / 26.2%
K 52.1% / 53.2% 47.0% / 46.9%
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(a) WD vs. Pk . Corr=.93. (b) Pk vs. K. Corr=.84. (c) WD vs. K. Corr=.87.

(d) WD vs. Pk . Corr=.95. (e) Pk vs. K. Corr=.84. (f) WD vs. K. Corr=.82.

Figure 8. Segmentation inter-annotator agreement: each point represents a single meeting.
(a)–(c) include major topics only; (d)–(f) include major and minor topics.

Our measurement of K follows that suggested in Carletta (1996) and de-
scribed fully in Siegel and Castellan (1988):

K =
P (A) − P (E)

1 − P (E)
(10.1)

This measures pairwise agreement on classification tasks, correcting for
chance, where P (A) is the probability of agreement and P (E) is the prob-
ability of chance agreement between two annotators. Increasing values of K
indicate better agreement. We use the break classification form of our annota-
tions when calculating this metric.

Our second measurement is a variation on Pk, which is computed as follows:

Pk(a,b) =
∑N−k

i=1 (δa(i, i + k)⊕δb(i, i + k))
N − k

(10.2)

Pk estimates the probability that two randomly drawn temporal values
occurring during the discourse are classified as being in different segments by
the two segmentations a and b – thus, decreasing Pk indicates better agree-
ment. Here, δx(t1, t2) is an indicator function which evaluates to 1 if the
segmentation x places the times t1 and t2 in the same segment. The ⊕ operator
represents the XNOR function. As mentioned in Beeferman et al. (1999), if
the value k is set to half the mean topic segment length, the metric provides
appropriate results for all degraded forms of segmentation, including random
segmentation. We impose a slight variation on the calculation of k by not treat-
ing one annotation as a reference and the other as a hypothesis, but rather by
incorporating both annotations when calculating the average segment length.
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The third and final metric, WD, is the most recently proposed and is a
variation on Pk intended to improve its tolerance of near-misses and varying
segment size distributions:

WD(a,b) =
∑N−k

i=1 (|ba(i, i + k) − bb(i, i + k)| > 0)
N − k

(10.3)

Here, bx(t1, t2) replaces δx(t1, t2) from equation 10.2 and is the number of
segment boundaries occurring between times t1 and t2 in the segmentation x.
This metric is different from Pk in that a penalty is assessed at each evaluation
point if the number of segment breaks in the interval is not equal between the
annotations. In Pk, the number of breaks is not counted and a penalty is only
assessed if one totals 0 and the other does not. For WD, we impose the same
change to the calculation of k as we do in our calculation of Pk.

Because our annotations have continuous-time boundaries, we must estab-
lish a stepping method for i. Following Galley et al. (2003), we use 20-second
stepping intervals. An investigation of inter-annotator agreement for varying
step sizes from 5 to 60 seconds showed no significant change in Pk or WD.
An evaluation of K with varying break classification window widths showed
a maximum at near 20 seconds. For the purposes of transparency and descrip-
tiveness, we include measurements of all three of the above metrics in our
evaluation, using a 20-second window width and/or step size.

5.5 Results
Multiple graphs showing results for inter-annotator agreement may be found
in Figure 8. The top three plots show agreement based only on major topic
boundaries. The bottom three include minor topic boundaries in the evaluation.
Each of the columns rows shows a pair-wise comparison of two of the three
metrics. Means and medians are provided in Table 1.

As expected, the metrics show a high level of correlation (correlation coef-
ficients are given in the figure captions). It is difficult to say what values for
our metrics signify a “good” level of reliability in the annotations. In com-
putational linguistics, a value of K = 0.67 is generally used as a cut-off for
reliable analysis, though it has been suggested on multiple occasions that this
is not appropriate for all tasks (see Eugenio and Glass, 2004) for a discussion.
Undeniably low scores do occur in our annotations. This is often found for
meetings which involved presentations of visual information, which made the
audio-only annotation task difficult. Some of this information may be gleaned
from the available annotator notes. Poor agreement and self-evaluation by the
annotators on some meetings suggest that some of the annotations should not
be used. It should be noted that there are more numerous outliers in the eval-
uation of major segments only, which is a result of there being some meetings
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which were only annotated as having as few as two major boundaries (after
pre-processing).

In addition, the two annotators marked 921 and 1,267 utterances respec-
tively as belonging to discussion about action items. We have yet to do sig-
nificant analysis of these annotations and wish to produce further annotations
of decision-making processes before using the data. Current analysis shows
inter-annotator agreement of utterance classification at K = 0.36.

5.6 Comparison with Similar Annotation Sets
In Galley et al. (2003), 25 of the meetings in the ICSI Meeting corpus were
hand annotated for topic breaks. A minimum of three annotators per meeting
were given the task of deciding if each speaker change in a linearly represented
meeting constituted a topic break.

Due to their process of establishing a reference segmentation, topic bound-
ary frequency is significantly different between their annotations and our indi-
vidual annotations. Our annotators produced major segments with an average
length of 180 seconds, while Galley et al.’s (2003) average 684 seconds. Their
annotations total 12.6 hours, while ours total 45.9.

Another noteworthy statistic is the distribution of topic boundaries over
meeting duration, depicted in Figure 9. The distribution is shown for each
of our annotators and from Galley et al. (2003). While the total number of
meetings is different between the two sets, there are significantly more topic
changes in the latter half of the meetings for each. It will be interesting to take
note of this statistic in other corpora to see if the trend is universal. It is unclear
if this is a by-product of the annotation process or of the meeting itself.

Finally, Figure 10 gives some further details about the characteristics of the
topic segmentation annotations we have collected. The first four graphs high-
light characteristics of distinct sets of meetings based on their general type.
Bed, Bmr, and Bro are each a particular subset of the ICSI meetings which
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Figure 9. Distribution of boundaries over meeting duration.
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Figure 10. Topic Segmentation Annotation Characteristics: (a) gives the mean duration of
the meetings annotated of each different type, which is useful in interpreting the other graphs;
(b)–(d) show per-annotator statistics broken down by meeting type, while (e)–(f) show his-
tograms of major and minor topic segment durations of the reference annotation.

have a similar theme (see the corpus documentation for details), and m in-
dicates meetings from the ISL corpus. The first graph shows mean meeting
length, while the second shows mean major topic segment length. The follow-
ing two show the number of major topic segments per meeting and the number
of minor topics per major topic. Finally, histograms indicating the distribution
of the durations of major and minor topic segments are given.

6. Current and Future Work
The work described in this chapter represents our first steps toward auto-
matic meeting understanding for a personal office assistant. While coarse-level
meeting segmentation is a useful first step, we are tackling the problem from
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multiple angles: including robust natural language chunk parsing, dialogue
act detection, argumentation structure analysis, and decision detection. Our
first steps in these areas will likely be similar to those we have taken in topic
segmentation: establishing modular additions to the annotation ontology, sup-
porting this in the NOMOS audiovisual toolkit, coding annotation, research,
and application tools for them, and then collecting annotations. Annotation
of these richer structures will require greater use of the inference capabilities
the ontology provides. For example, a tool designed for the annotation of
argumentative structure will need to employ the constraints imposed by the
ontology on that structure through the use of reasoning engines to constrain
the annotations a human can make.

In parallel, we are currently developing automatic topic segmentation and
action item detection tools by training classifiers on the annotations presented
above while using the presented software framework for feature extraction and
visualisation. For topic segmentation, initial investigation following a roughly
similar approach to Galley et al. (2003) (using a decision tree trained on both
lexical cohesion values and some discourse-based features – speaker activity,
speaker overlap, amount of silence – and cross-validating over 25 ICSI meet-
ings) has given average Pk error levels of around 0.35 for major topics. This is
higher than Galley et al. (2003) achieved on their segmentation, but this would
be expected with our finer-grained and less restricted notion of topic, and is at
least comparable to our human annotator agreement. Future development will
add prosodic features and chunk parser output. For action item detection, an
initial n-gram-based classifier using a combination of manually and automati-
cally extracted features is currently being developed, and has shown promising
performance on a separate small test meeting corpus; future development will
include the use of more structured hierarchical action item annotations.

Lastly, we expect to use the NOMOS audiovisual toolkit as a part of the
CALO office assistant itself. This will involve the integration of our architec-
ture with the CALO Desktop environment, allowing for pervasive feedback to
our algorithms and online supervised learning.
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Abstract This study presents an approach for developing more empirically motivated af-
fective dialogue tutorial systems. In particular, we use n-gram techniques from
statistical natural language processing to identify dependencies between student
affective states of certainty and subsequent tutor dialogue acts, in an annotated
corpus of human–human spoken tutoring dialogues. We first represent our dia-
logues as bigrams of annotated student and tutor turns. We next use χ2 analysis
to identify dependent bigrams, i.e., where the student certainty and tutor dia-
logue act annotations are related in some way other than predicted by chance.
Our results show dependencies between many student states and subsequent tu-
tor dialogue acts. We then analyse the dependent bigrams both with respect to
differences between observed and expected counts and with respect to correla-
tions with learning; these analyses suggest ways that our current computer tutor
can be enhanced to adapt its dialogue act generation based on these dependen-
cies.
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corpus-based techniques and analysis; adaptive dialogue modelling
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1. Introduction
There has been increasing interest in affective dialogue systems (André et al.,
2004), motivated by the belief that in human–human dialogues, conversational
participants seem to be (at least to some degree) detecting and responding to the
emotional states of other participants. Affective dialogue research addresses
topics such as emotion recognition and synthesis, annotation, evaluation, and
agents, and is being pursued in many application areas, including intelligent
tutoring systems (Aist et al., 2002; Craig and Graesser, 2003; Bhatt et al.,
2004; Johnson et al., 2004; Moore et al., 2004; Heylen et al., 2004; Zhang
et al., 2004; Pon-Barry et al., 2004). However, while it seems intuitively plau-
sible that human tutors do in fact vary their responses based on the detection of
student affect,1 to date this belief has largely been theoretically rather than em-
pirically motivated. We propose using bigram-based techniques from statistical
natural language processing, as a data-driven method for identifying relation-
ships between student affect and tutor responses in a corpus of human–human
spoken tutoring dialogues. Analysis of these relationships suggests strategies
for enhancing our current computer tutor to adapt its dialogue act generation
based on student affect.

To investigate affect and tutorial dialogue systems, we have built ITSPOKE
(Intelligent Tutoring SPOKEn dialogue system) (Litman and Silliman, 2004),
which is a speech-enabled version of the text-based Why2-Atlas conceptual
physics tutoring system (VanLehn et al., 2002).2 Our long term goal is to
have this system detect and adapt to student affect, and to investigate whether
such an affective version of our system improves learning and other mea-
sures of performance. To date we have collected corpora of both human–
human and human–computer tutoring dialogues, and we have demonstrated
the feasibility of annotating and recognising student emotions from lexical,
acoustic–prosodic, and dialogue features automatically extractable from these
corpora (Litman and Forbes-Riley, 2004a, b, 2006b; Forbes-Riley and Litman,
2004).

Here, we assume viable emotion recognition and move on to the next step:
providing an empirical basis for enhancing our computer tutor to adaptively re-
spond to student affect. We first show how to apply n-gram techniques used in
other areas of computational linguistics to mine human–human dialogue cor-
pora for dependent bigrams of student states and tutor responses. We then use
our bigram analysis to show: (1) statistically significant dependencies exist be-
tween students’ emotional states and our human tutor’s dialogue act responses,

1We use the terms “affect” and “emotion” loosely to cover emotions and attitudes believed to be relevant
for tutoring.
2We also use ITSPOKE to examine the utility of building spoken (as opposed to typed) dialogue tutors
(e.g. Litman et al., 2004, 2006).
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(2) by comparing differences between observed versus expected counts, the
dependent bigrams identified as statistically significant suggest empirically-
motivated adaptive strategies for future implementation in our computer tutor.
This method should generalise to any domain with dialogue corpora labelled
for user state and system response.

Because human–human tutoring generally yields higher student learning
than human–computer tutoring, human behaviour is often considered the gold-
standard when designing intelligent tutoring systems. However, whether repli-
cating human adaptive strategies will indeed improve system performance can
only be determined once such strategies have been isolated and implemented.
We shed light on these issues by analysing the relationship between our de-
pendent bigrams and student learning in both our human–human and human–
computer corpora. Our results suggest first that not all human adaptive strate-
gies are necessarily effective for increasing learning in our human–human tu-
toring corpus, and second, that these adaptive strategies may have differing
effectiveness in a human–computer tutoring corpus.

In Section 2 we present our corpora of spoken tutoring dialogues and our an-
notation schemes for labelling student affect and tutor responses. In Section 3
we describe how bigram representations of annotated student and tutor turns
are extracted from our human tutoring corpus. We then use the Chi Square
(χ2) test to identify and analyse dependent bigrams. In Section 4 we use
Pearson’s correlation to analyse relationships between dependent bigrams and
student learning. Section 5 discusses related work, and Section 6 concludes
and discusses current directions.

2. Spoken Tutoring Data and Annotation

2.1 The Spoken Tutoring Dialogue Corpora
Our data for this study comes from spoken interactions between a student and
a human tutor, through which students learn to solve qualitative physics prob-
lems, i.e., thought-provoking “explain” or “why” type physics problems that
can be answered without doing any mathematics.

Our human–human spoken dialogue tutoring corpus was collected from
November 2003–April 2004, as part of a larger evaluation comparing student
learning across typed and spoken human–human and human–computer dia-
logue tutoring conditions (Litman et al., 2004, 2006). For that evaluation, we
also collected a human–computer corpus using our ITSPOKE spoken dialogue
tutoring system (Litman and Silliman, 2004); the human tutor and ITSPOKE
performed the same task.

The experimental procedure for collecting both corpora was as follows: (1)
students were given a pre-test measuring their knowledge of physics, (2) stu-
dents used a web and voice interface to work through a set of 5–10 qualitative
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physics training problems with the (human or computer) tutor, and (3) students
were given a post-test that is similar to the pre-test. Before working through
the training problems, students were asked to read through a small document
of background physics material.3 The experiment typically took no more than
7 hours per student, and was performed in 1–2 sessions. Students were Univer-
sity of Pittsburgh students who had never taken a college level physics course,
and who were native speakers of American English.

Each spoken dialogue involves one physics problem. The dialogue begins
after a student types an essay answering the physics problem. The (human or
computer) tutor analyses the student essay, then engages the student in dialogue
to correct misconceptions and elicit more complete explanations. The student
then revises the essay, thereby ending the dialogue or causing another round
of dialogue/essay revision. Dialogue interaction between student and tutor was
mediated via a web interface supplemented with a high-quality audio link. The
student and the human tutor were separated by a partition, and spoke through
head-mounted microphones. Each participant’s speech was digitally recorded
on a separate channel. In the human–human corpus, transcription and turn-
segmentation of the student and tutor speech were done by a paid transcriber.
The transcriber added a turn boundary when: (1) the speaker stopped speaking
and the other party in the dialogue began to speak, (2) the speaker asked a
question and stopped speaking to wait for an answer, (3) the other party in the
dialogue interrupted the speaker and the speaker paused to allow the other party
to speak. In the human–computer corpus, transcription and turn segmentation
were performed by the ITSPOKE system.

Our human–human corpus, which is the focus of this study, consists of 128
transcribed and annotated spoken tutoring dialogues between 14 different stu-
dents and one human tutor. On average, the dialogues last 18.1 minutes and
contain 46.5 student and 43.0 tutor turns. In total, there are 5,778 student turns
and 5,493 tutor turns in the corpus. Annotated4 dialogue excerpts from this
corpus are shown in Figures 1, 2, and 7 (punctuation is added for readability).

2.2 Annotating Student Certainty
In previous work, (Litman and Forbes-Riley, 2004a, b, 2006b; Forbes-Riley
and Litman, 2004), we described and evaluated a scheme for manually anno-
tating the student turns in our tutoring corpora for intuitively perceived, pos-
itive and negative emotions such as (un-)certainty, frustration, boredom, and

3In the human tutoring experiment, the pretest was given before the reading. In the computer tutoring
experiment, the pretest was moved to after the reading, to allow us to measure learning gains caused by the
experimental manipulation without confusing them with gains caused by the background reading. Also, in
the computer tutoring experiment, all students worked through only five physics problems with ITSPOKE.
4All annotations were performed from both audio and transcription within a speech processing tool.
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PHYSICS PROBLEM: Suppose a man is running in a straight line at constant speed. He
throws a pumpkin straight up. Where will it land? Explain.

. . . dialogue excerpt at 16.6 minutes into session. . .

STUDENT68: So the- when you throw it up the acceleration will stay the same? (UNCERTAIN)

TUTOR69: Acceleration uh will always be the same because there is- that is being caused by
force of gravity which is not changing. [RS, EX]

STUDENT70: mm-k (NEUTRAL)

TUTOR71: Acceleration is- it is in- what is the direction uh of this acceleration- acceleration
due to gravity? [SAQ]

STUDENT72: It’s- the direction- it’s downward. (CERTAIN)

TUTOR73: Yes, it’s vertically down. [POS, RS]

STUDENT74: mm-k. (NEUTRAL)

. . . 53 seconds pass while student revises their essay. . .

STUDENT75: So in relation to the velocity, when it’s being thrown up the velocity increases-
well no, it decreases and when it goes down it increases. (MIXED)

TUTOR76: Yeah. [POS]

Figure 1. Annotated human–human corpus excerpt #1.

PHYSICS PROBLEM: Suppose a man is in a free-falling elevator and is holding his keys
motionless right in front of his face. He then lets go. What will be the position of the keys
relative to the man’s face as time passes? Explain.

. . . dialogue excerpt at 4.0 minutes into session. . .

TUTOR16: Um, ok, so now we are thinking in terms of the factors that govern this displace-
ment. Um, now they are- the elevator is in freefall. So does what does that tell you about the
motion of the keys and the person? [RD, LAQ]

STUDENT17: Um, that they’re only under one force and that’s gravity. (UNCERTAIN)

TUTOR18: Ok, that is the force. But what does it tell you- that’s right and that is about the
force, but what does that tell you about their motion? [POS, LAQ]

STUDENT19: Ok, uh, the motion is- oh, is they’re moving in the same direction con- they’re
constant. (UNCERTAIN)

TUTOR20: Uh, ok. They are also in freefall. [BO]

Figure 2. Annotated human–human corpus excerpt #2.

enthusiasm; we also showed that once annotated, these emotion classes could
be predicted significantly better than a majority class baseline using a vari-
ety of (para-) linguistic features automatically extractable from our corpora.
However, because this emotion annotation was very labour-intensive, only 10
human–human dialogues and 15 human–computer dialogues from our corpora
were annotated using this method.
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uncertain: Use this label only when you feel the student is clearly uncertain about what
they are saying.

certain: Use this label only when you feel the student is clearly certain about what they
are saying.

mixed: Use this label if you feel that the speaker conveyed some mixture of uncertain
and certain utterances within the same turn.

neutral: Use this label when you feel the speaker conveyed no sense of certainness. In
other words, the speaker seemed neither clearly uncertain nor clearly certain (nor clearly
mixed). This is the default case.

Figure 3. “Certainness” annotation.

In order to widen the scope of our current investigation into emotion adap-
tation, the present study makes use of a related but more limited emotion
annotation scheme. In particular, student states of “Certainness” (Liscombe
et al., 2005) are more prevalent than other student emotional states in our an-
notated dialogues, and are also of interest in other recent tutorial dialogue re-
search (Bhatt et al., 2004; Moore et al., 2004; Pon-Barry et al., 2004). Thus for
this study, we manually annotated all of the student turns in our human–human
corpus for “Certainness”.5 This annotation uses one of four labels, defined in
our manual as shown in Figure 3. Although evidence for these “Certainness”
labels can come from many knowledge sources, such as lexical items (e.g.,
“I don’t know”) and/or acoustic-prosodic features (e.g., rising pitch, pausing),
to avoid influencing the annotator’s intuitive understanding of “Certainness”
expression, and because particular cues are not used consistently or unambigu-
ously across speakers, our annotation manual does not associate particular cues
with particular labels. Rather, as shown in Figure 3, the annotator’s decision is
based wholly on intuitive judgement. Examples of uncertain student turns are
shown in Figure 1 (STUDENT68) and Figure 2 (STUDENT17, STUDENT19).
Examples of certain student turns are shown in Figure 1 (STUDENT72) and
Figure 7 (STUDENT99, STUDENT101, STUDENT103). An example of a
mixed student turn is shown in Figure 1 (STUDENT75). Examples of neutral
student turns are shown in Figure 1 (STUDENT70, STUDENT74).

One annotator labelled all the student turns in our human–human corpus for
“Certainness”, yielding the distribution shown in Table 1.

We tested inter-annotator agreement using the 10 dialogues (505 student
turns) in our human–human corpus that were previously labelled by a sepa-
rate annotator using the more labour-intensive scheme described above. The

5Liscombe et al. (2005) show that using only acoustic-prosodic features as predictors, these student certain-
ness annotations can be predicted with 76.42% accuracy.
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Table 1. Student “Certainness” totals.

Certain Mixed Neutral Uncertain

1,158 235 3,529 856

Table 2. Confusion matrix for Student Certainness inter-annotation.

Uncertain Neutral Certain Mixed

Uncertain 65 20 24 14
Neutral 5 246 14 5
Certain 4 50 43 6
Mixed 2 3 3 1

confusion matrix in Table 2 summarises the inter-annotator agreement across
the Certainness labels, which yielded 0.50 Kappa. We view this as a lower
bound for our inter-annotator agreement, since the annotation tasks being
compared are non-identical. Although Kappa value interpretation is somewhat
controversial and varies depending on the application field, Landis and Koch
(1977) and others use the following agreement standard: 0.21–0.40 = “Fair”;
0.41–0.60 = “Moderate”; 0.61–0.80 = “Substantial”; 0.81–1.00 = “Almost Per-
fect”. Other studies of emotion annotation in naturally occurring dialogues in
other domains have also yielded Kappas in the range of “Moderate” agreement
(Ang et al., 2002; Narayanan, 2002; Shafran et al., 2003).

2.3 Annotating Tutor Dialogue Acts
Also prior to the present study, each tutor turn in our corpus had been
manually annotated for tutoring-specific dialogue acts as part of a project
comparing tutor and student dialogue behaviour in human versus computer
tutoring, and examining the relationships of these behaviours to student learn-
ing (Litman and Forbes-Riley, 2006a; Forbes-Riley et al., 2005). Our tagset
of “Tutor Dialogue Acts” is shown and briefly defined in Figures 4–6. As
shown, we distinguish three main types of Tutor Acts.6 The “Tutor Feedback
Acts” in Figure 4 label feedback based on the presence of lexical items in
the tutor turn. Although these tags often coincide with the correctness of a
student turn, they can also convey encouragement, or relate to the discourse
level (e.g., “no I didn’t say that”) or to the student’s earlier essay. Examples

6An additional tag, “NonSubstantive” (NS), was used for utterances that did not contribute to the physics
discussion (e.g., social coordinations such as “Are you ready to begin?”). These utterances were removed
from this analysis.
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Positive Feedback (POS): positive feedback lexical item is present in the turn.

Negative Feedback (NEG): negative feedback lexical item is present in the turn.

Figure 4. Tutor Feedback Acts.

Short Answer Question (SAQ): concerns basic quantitative relationships.

Long Answer Question (LAQ): requires a definition or interpretation of concepts.

Deep Answer Question (DAQ): requires reasoning about causes and/or effects.

Figure 5. Tutor Question Acts.

Restatement (RS): repetitions and rewordings of prior student statement.

Recap (RC): restating student’s overall argument or earlier-established points.

Request/Directive (RD): directions summarising expectations about student’s overall
argument.

Bottom Out (BO): complete answer supplied after student answer is incorrect, incom-
plete or unclear.

Hint (HN): partial answer supplied after student answer is incorrect, incomplete or un-
clear.

Expansion (EX): novel details about student answer supplied without first being queried
to student.

Figure 6. Tutor State Acts.

of Positive Feedback are shown in Figure 1 (TUTOR73, TUTOR76), Figure 2
(TUTOR18) and Figure 7 (TUTOR98). Examples of Negative Feedback are
shown in Figure 7 (TUTOR100, TUTOR104). Additional examples of both
types of Feedback Acts are shown in the appendix.

The “Tutor Question Acts” in Figure 5 label the type of question that the
tutor asks, in terms of their content and the expectation that the content pre-
supposes with respect to the type of student answer required. Examples of
Short Answer Questions are shown in Figure 1 (TUTOR71) and Figure 7
(TUTOR98, TUTOR100). Examples of Long Answer Questions are shown in
Figure 2 (TUTOR16, TUTOR18). Examples of Deep Answer Questions are
shown in Figure 7 (TUTOR102, TUTOR104).

The “Tutor State Acts” in Figure 6 summarise or clarify the current
state of the student’s argument, based on the prior student turn(s). Exam-
ples of Restatements are shown in Figure 1 (TUTOR69, TUTOR73) and
Figure 7 (TUTOR100, TUTOR102). An example of a Recap is shown in
Figure 7 (TUTOR98). An example of a Request/Directive is shown in Figure 2
(TUTOR16). Examples of Bottom Outs are shown in Figure 2 (TUTOR20)
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PHYSICS PROBLEM: Two closed containers look the same, but one is packed with lead and
the other with a few feathers. How could you determine which had more mass if you and the
containers were floating in a weightless condition in outer space? Explain.

. . . dialogue excerpt at 16.5 minutes into session. . .

TUTOR98: Yes, we are all learning. Ok, so uh now uh you apply the same push for the same
amount of time for on both the containers. Then what would you compare to distinguish between
them? [POS, RC, SAQ]

STUDENT99: I would be comparing their rate of velocity. (CERTAIN)

TUTOR100: Not rate. You will be comparing their velocity, you see, rate will imply that some-
thing is changing which there is no change, velocity is constant. So you will surely compare
their velocities- which one will be faster? [NEG, HN, RS, SAQ]

STUDENT101: The feathers. (CERTAIN)

TUTOR102: The feathers- why? [RS, DAQ]

STUDENT103: Because there’s less matter. (CERTAIN)

TUTOR104: No no because they accelerated more- because for the same amount of time, the
acceleration in the container which contains feather was more. Therefore it acquired a larger
velocity- uh, and why did it acquire lar-larger uh, why did it have greater acceleration? [NEG,
BO, EX, DAQ]

Figure 7. Annotated human–human corpus excerpt #3.

and Figure 7 (TUTOR104). An example of a Hint is shown in Figure 7
(TUTOR100). Examples of Expansions are shown in Figure 1 (TUTOR69)
and Figure 7 (TUTOR104).

This tagset was developed based on pilot annotation studies using similar
tagsets previously applied in other tutorial dialogue projects, e.g., as in
Graesser and Person (1994), Graesser et al. (1995), Pilkington (1999) and
Johnson et al. (2004). Note that since tutoring dialogues have a number of
tutoring-specific dialogue acts (e.g., hinting), researchers working on tuto-
rial dialogue typically use tutoring-specific dialogue act tagsets rather than
more domain-independent schemes such as DAMSL (Core and Allen, 1997)
(although DAMSL is still somewhat biased towards task-oriented dialogue).
Rickel et al. (2001) present a first step towards bridging this gap, by inte-
grating an initial set of tutoring-specific acts into a more general collaborative
discourse framework. Similarly, Wolska et al. (2004) are extending DAMSL to
address the needs of tutoring. Our Feedback and Question Acts have primarily
backward- and forward-looking functions respectively, in DAMSL.

As our corpus dialogue excerpts in Figures 1, 2, and 7 illustrate, most tutor
turns are labelled with multiple Tutor Acts. Applying the Dialogue Act coding
scheme to our tutor turns yielded 7,201 Tutor Acts on the 5,493 tutor turns
in our human–human corpus, distributed across our Tutor Dialogue Acts as
shown in Table 3.
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Table 3. Tutor Dialogue Act totals.

SAQ LAQ DAQ POS NEG RS RC RD BO HN EX

1,205 167 586 902 203 1,273 305 298 336 865 1,061

Table 4. Confusion matrix for Tutor Act inter-annotation.

DQ LQ SQ BO EX HN RD RC RS NEG POS NS

DQ 25 1 14 0 0 2 2 0 0 0 0 4
LQ 1 4 1 0 0 0 0 0 0 0 0 1
SQ 3 9 60 0 0 2 1 0 1 0 0 7
BO 0 0 1 12 2 0 1 1 3 0 0 4
EX 0 0 0 0 18 3 6 11 0 0 0 20
HN 0 1 0 2 8 9 11 7 0 16 0 17
RD 0 0 0 0 0 0 5 0 0 0 0 1
RC 0 0 1 0 2 0 0 14 1 0 0 4
RS 0 0 0 3 1 1 2 13 35 1 1 21
NEG 0 0 0 0 0 0 0 0 0 9 0 4
POS 0 0 0 0 0 0 0 0 0 1 34 18
NS 0 0 1 1 0 0 10 0 2 3 0 68

While one annotator labelled the entire corpus, a second annotator sepa-
rately annotated 8 human–human dialogues containing 330 tutor turns, for
the purposes of an inter-annotator agreement study. Since the unit of analysis
that ITSPOKE currently processes is the turn, the studies herein are focused
at the turn-level. However, since our “Tutor Dialogue Acts” coding scheme
labels utterances within the turn, we measured inter-annotator agreement on
the 548 Tutor Acts within the 8 inter-annotated dialogues. The confusion ma-
trix in Table 4 summarises the inter-annotator agreement across these Tutor
Acts,7 which yielded 0.48 Kappa (“Moderate”); this agreement improves to
0.63 Kappa (“Substantial”) if we collapse the categories into their more gen-
eral types (Question Acts, State Acts, and Feedback Acts). These results sug-
gest that the annotation is reliable.

7Note that we include the NS (NonSubstantive) tag here in the confusion matrix and in the Kappa compu-
tation, although this tag was excluded from our analyses since it labels utterances that do not contribute to
the physics discussion.
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3. Data Analysis
We hypothesize that there are dependencies between student emotional states
(as represented by the “Certainness” labels) and subsequent tutor responses (as
represented by “Tutor Dialogue Act” labels), and that analysing these depen-
dencies can suggest ways of incorporating techniques for adapting to student
emotions into our computer tutor. We test these hypotheses by extracting a bi-
gram representation of student and tutor turns from our annotated dialogues,
computing the dependencies of the bigram permutations using Chi Square (χ2)
analyses, and drawing conclusions from the significant results.

3.1 Dialogue Bigrams
We view the sequence: “Student Turn, Tutor Turn” as our bigram unit, whose
individual elements constitute “words” in the bigram. In Figure 7 there are
three such units: STUDENT99 - TUTOR100, STUDENT101 - TUTOR102,
and STUDENT103 - TUTOR104. Because our goal in this study is to analyse
tutor responses, we extract all and only these units from our dialogues for
analysis. In particular, we do not extract bigrams of the form: “Tutor Turnn

– Student Turnn+1”, although we will do so in a future study when we analyse
student responses to tutor actions. This decision is akin to disregarding word-
level bigrams that cross sentence boundaries. Here, the sequence: “Student
Turn, Tutor Turn” is our “dialogue sentence”, and we are interested in all pos-
sible permutations of our student and tutor turn annotations in our data that
combine to produce these dialogue sentences.

After extracting the annotated “Student Turn, Tutor Turn” bigrams, we
sought to investigate the dependency between student emotional states and tu-
tor responses. Although each of our student turns was labelled with a single
“Certainty” tag, frequently our tutor turns were labelled with multiple “Tutor
Act” tags, as noted above. Because there are 11 “Tutor Act” tags, and no limits
on tag combinations per turn, it is not surprising that in our 4,921 extracted bi-
grams, we found 478 unique tag combinations in the tutor turns, 294 of which
occurred only once. Treating each tagged tutor turn as a unique “word” would
thus yield a data sparsity problem for our analysis of bigram dependencies. Due
to this data sparsity problem, a question we can ask instead, is: is the tutor’s
inclusion of a particular Tutor Act in a tutor turn dependent on the student’s
state of certainness in the prior turn?

That is, we decided to approach the dependency analysis by considering the
presence or absence of each Tutor Act tag separately. In other words, we per-
formed 11 different analyses, one for each Tutor Act tag T, each time asking
the question: is there a dependency between student emotional state and a tu-
tor response containing T? More formally, for each analysis, we took our set
of “Student Turn, Tutor Turn” bigrams, and replaced all annotated tutor turns
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TUTOR98: [POS, RC, SAQ] −→ [POS]
TUTOR100: [NEG, HN, RS, SAQ] −→ [notPOS]
TUTOR102: [RS, DAQ] −→ [notPOS]
TUTOR104: [NEG, BO, EX, DAQ] −→ [notPOS]

Figure 8. Tutor turns from excerpt #3 in POS/notPOS analysis.

containing T with only T, and all not containing T with only not T. The result
was 11 different sets of 4,921 “Student Turn, Tutor Turn” bigrams. As an ex-
ample, we show in Figure 8 how the tutor turns in Figure 7 are converted within
the “POS/notPOS” analysis: As shown, we have replaced all tutor tagged turns
containing POS with only “POS”, and we have replaced all tutor tagged turns
not containing POS with only “notPOS”.

The benefit of these multiple analyses is that we can ask specific questions
directly motivated by what our computer tutor can do. For example, in the
POS/notPOS analysis, we ask: should student emotional states impact whether
the computer tutor generates positive feedback? Currently, there is no emo-
tion adaptation by our computer tutor – it generates positive feedback inde-
pendently of student emotional states, and independently of any other Tutor
Acts that it generates. The same is true for each Tutor Act generated by our
computer tutor.

3.2 Chi Square (χ2) Analyses
We analysed bigram dependency using the Chi Square (χ2) test.8 In this section
we illustrate our analysis method, using the set of “Certainness – POS/notPOS”
bigrams. In the next section we discuss the results of performing this same
analysis on all 11 sets of “Student Certainness – Tutor Act” bigrams.

χ2 tests the statistical significance of the relationship between two variables
in a dataset. Our observed “Certainness – POS” bigram permutations are re-
ported as a bivariate table in Table 5. For example, we observed 252 neutral
– POS bigrams, and 2,517 neutral – notPOS bigrams. Row totals show the
number of bigrams containing the first bigram “word” (e.g., 2,769 bigrams
contained “neutral” as the first token, followed by “POS” or “notPOS”). Col-
umn totals show the number of bigrams containing the second bigram “word”
(e.g., 781 bigrams contained “POS” as the second token).

χ2 compares these observed counts with the counts that would be expected
if there were no relationship at all between the two variables in a larger pop-

8A good tutorial for using the χ2 test of statistical significance is found here:
http://www.georgetown.edu/faculty/ballc/webtools/web chi tut.html.
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Table 5. Observed student “Certainness” – tutor “Positive Feedback” bigrams.

Certainness POS notPOS Total

Neutral 252 2,517 2,769
Certain 273 831 1,104
Uncertain 185 631 816
Mixed 71 161 232

Total 781 4,140 4,921

Table 6. Expected student “Certainness” – tutor “Positive Feedback” bigrams.

Certainness POS notPOS Total

Neutral 439.46 2,329.54 2,769
Certain 175.21 928.79 1,104
Uncertain 129.51 686.49 816
Mixed 36.82 195.18 232

Total 781 4,140 4,921

ulation (the null hypothesis). For each cell c in Table 5, the expected count is
computed as: (c’s row total * c’s column total)/(total bigrams). Expected counts
for Table 5 are shown in Table 6.

A χ2 value assesses whether the differences between observed and expected
counts are large enough to conclude that a statistically significant relationship
exists between the two variables. The χ2 value for the table is computed by
summing the χ2 value for each cell, which is computed as follows: (observed
value – expected value)2/expected value. The total χ2 value for Table 5 is
225.92. χ2 would be 0 if observed and expected counts were equal. However
some variation is required (the “critical χ2 value”), to account for the table’s
degree of freedom and one’s chosen probability of exceeding any sampling
error (typically 0.05–0.001). Our actual χ2 value must be larger than this criti-
cal value in order to conclude that there is a statistically significant relationship
between our two variables. Table 7 shows the critical χ2 values at different er-
ror thresholds for tables having 1 and 3 degrees of freedom, where degrees of
freedom is computed as (#rows - 1) * (#columns - 1). Critical χ2 values are
listed in most statistics textbooks.

Table 5 has 3 degrees of freedom, and its χ2 value of 225.92 greatly ex-
ceeds the critical value for 3 degrees of freedom even at p ≤ 0.001. We thus
conclude that there is a statistically significant dependency between Certain-
ness and Positive Feedback.
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Table 7. Critical χ2 values.

Degrees of Freedom p ≤ 0.05 p ≤ 0.01 p ≤ 0.001

1 3.84 6.64 10.83
3 7.82 11.35 16.27

Table 8. NSP output: Certainness – POS bigrams.

Bigram Rank χ2 Total Token1 Token2

Neutral - POS 1 217.35 252 2,769 781
Certain - POS 2 83.63 273 1,104 781
Mixed - POS 3 39.58 71 232 781
Uncertain - POS 4 33.88 185 816 781

We can look more deeply into this overall dependency by calculating the sta-
tistical significance of the dependencies between each specific “Certainness”
tag and the Positive Feedback tag. The freely available Ngram Statistics Pack-
age (NSP) (Banerjee and Pedersen, 2003) computes these χ2 values automati-
cally when we input each set of our “Student Certainness – Tutor Act” bigrams.
Table 8 shows the resulting NSP output for the POS/notPOS analysis. Each row
shows: (1) the bigram, (2) its rank (according to highest χ2 value), (3) its χ2

value, (4) the total number of occurrences of this bigram, (5) the number of
times the first token in this bigram occurs first in any bigram, (6) the number
of times the second token in this bigram occurs last in any bigram.

Each row in Table 8 can alternatively be viewed as a 2 × 2 table of ob-
served counts. For example, the table for the neutral – POS bigram has a
“neutral” row (identical to that in Table 5) and a “non-neutral” row (computed
by summing all the non-neutral rows in Table 5). This table has one degree of
freedom.

As shown, all of the bigrams in Table 8 have χ2 values exceeding the critical
value for 1 degree of freedom even at p ≤ 0.001. We thus conclude that there
are statistically significant dependencies between each of the Certainness tags
and Positive Feedback.9 In the next section we will see cases where there is an
overall significant dependency, but significant dependencies only for a subset
of the four Certainness tags.

9Note that the χ2 value for each of the bigrams in Table 8 is identical to its “Certainness – notPOS”
counterpart. This can be understood by observing that the 2 X 2 observed (and expected) table for each
“Certainness – POS” bigram is identical to its “notPOS” counterpart, except that the columns are flipped.
That is, “not notPOS” is equivalent to “POS”.
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Finally, we can compare the difference between observed and expected val-
ues for the statistically significant dependent bigrams that have been identified.
For example, by comparing Tables 5 and 6, we see that the human tutor re-
sponds with positive feedback more than expected after emotional turns, and
less than expected after neutral turns. This suggests an adaptive technique for
our computer tutoring system too: ITSPOKE could adapt to non-neutral emo-
tional states by generating more positive feedback (independently of whether
the Certainness value is certain, uncertain, or mixed).

3.3 Results and Discussion
In essence, for each of the 11 Tutor Acts described in Figures 4–6, the first part
of our χ2 analysis determines whether or not there is an overall dependency
between Student Certainness and that specific Tutor Act. The second part then
determines how this dependency is distributed across individual Student Cer-
tainness states. In this section, we present and discuss our results of the χ2

analysis across all 11 sets of our “Certainness – Tutor Act” bigrams. Note that
the tables present only our best results, where the χ2 value exceeded the critical
value at p ≤ 0.05 (7.82 and 3.84 for 3 and 1 degrees of freedom, respectively).
If a bigram’s χ2 value did not exceed this critical value, it is not shown.

Table 9 presents our best results across our two sets of “Certainness – Feed-
back Act” bigrams. The first four columns show the bigram, along with its
observed and expected counts and its χ2 value. The first row for each set
shows the χ2 value for the overall dependency between Certainness and Feed-
back (e.g. 225.92 for CERT – POS). The remaining rows per set are ranked

Table 9. Observed, expected, and χ2 values for dependent “Certainness” – “Feedback”
bigrams (p ≤ 0.05).

Bigram Observed Expected χ2 # Students

CERT - POS 781 781 225.92 12

Neutral - POS 252 439.46 217.35 13
Certain - POS 273 175.21 83.63 9
Mixed - POS 71 36.82 39.58 6
Uncertain - POS 185 129.51 33.88 6

CERT - NEG 196 196 135.96 11

Neutral - NEG 34 110.29 125.67 7
Uncertain - NEG 68 32.5 48.41 7
Mixed - NEG 24 9.24 25.77 5
Certain - NEG 70 43.97 20.69 3
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according to the χ2 values for the specific dependencies between each “Cer-
tainness” tag and the “Feedback” tag (e.g., 217.35 for neutral – POS). Note
that, while all bigrams shown are statistically significant at p ≤ 0.05, as the
χ2 values increase above the critical value, the results become more signifi-
cant. Finally, recall that our bigrams were extracted from all the student turns
in our corpus, and thus these dependent bigrams represent dependencies that
hold across all 14 students in our corpus. For comparison, the final column in
the table shows the total number of individual students (out of the 14 possi-
ble) for which this same dependency also holds at p ≤ 0.05, when individual
χ2 values are computed for each student’s individual observed and expected
bigram counts.10

As shown, there are strong overall dependencies between Student Certain-
ness and both Positive and Negative Tutor Feedback. There are also depen-
dencies between every specific Certainness tag and both Positive and Negative
Feedback. Most of these dependencies also hold for a majority of students
individually. Moreover, for both types of feedback, the tutor responds with
more feedback than expected after all emotional student turns (non-neutral),
and with less feedback than expected after neutral student turns. This suggests
that an increased use of feedback is a viable adaptation to non-neutral emo-
tional states. Of course, the type of feedback adaptation (POS or NEG) will
also be influenced by whether the student answer is correct, which we will
return to below.

Table 10 presents our best results across our three sets of “Certainness –
Question Act” bigrams. As shown, there are overall dependencies between
Student Certainness and all of the Tutor Question Act types. Within the Short
Answer Question (SAQ) bigrams, the tutor responds to certain and uncertain
turns with slightly more Short Answer Questions than expected, and to neutral
turns with slightly fewer Short Answer Questions than expected. Similarly,
within the Long Answer Question (LAQ) bigrams, the tutor responds to mixed
and uncertain turns with slightly more Long Answer Questions than expected,
and to neutral turns with slightly fewer Long Answer Questions than expected.
The dependency between Student Certainness and Tutor Deep Answer Ques-
tions (DAQ) is wholly explained by the uncertain – DAQ bigram, where the
tutor responds to uncertain turns with slightly fewer Deep Answer Questions
than expected. However, most of these χ2 values barely exceed the critical
value even at p ≤ 0.05, and are dependent for very few students individually.
These results suggest that “Question Acts” aren’t highly relevant overall for
adaptation to student Certainness; we hypothesize that they will play a more
significant role when we analyse student emotional responses to tutor actions.

10We thank the attendees at SIGdial 2005 for suggesting this comparison.
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Table 10. Observed, expected, and χ2 values for dependent “Certainness” – “Question Act”
bigrams (p ≤ 0.05).

Bigram Observed Expected χ2 # Students

CERT - SAQ 1,135 1,135 18.06 1

Neutral - SAQ 588 638.65 11.94 3
Certain - SAQ 290 254.63 8.23 4
Uncertain - SAQ 213 188.21 5.09 2

CERT - LAQ 160 160 11.57 2

Mixed - LAQ 14 7.54 6.00 1
Neutral - LAQ 76 90.03 5.17 2
Uncertain - LAQ 36 26.53 4.19 0

CERT - DAQ 550 550 9.15 0

Uncertain - DAQ 67 91.2 8.67 0

Table 11 presents our best results across our six sets of “Certainness – State
Act” bigrams. As shown, there is a strong overall dependency between Stu-
dent Certainness and Tutor Restatements, explained by the strong dependen-
cies of the certain – RS and neutral – RS bigrams, where the tutor responds
to certain turns with more Restatements than expected, and to neutral turns
with less Restatements than expected. These dependencies hold across most
students individually as well. There is a much weaker dependency between
Student Certainness and Tutor Recaps, explained by the neutral – RC and
certain – RC bigram, where the tutor responds to neutral turns with slightly
more Recaps than expected and to certain turns with slightly less Recaps than
expected. There are no dependencies at all between Student Certainness and
Tutor Request Directives (RD). Although these three Tutor State Acts all serve
a summary purpose with respect to the student’s argument, RC and RD are de-
fined as more general acts whose use is based on the overall discussion so far.
Only RS addresses the immediately prior student turn; thus it is not surprising
that its use shows a stronger dependency on the prior student certainness. The
tutor’s increased use of RS after certain turns suggests an adaptation strategy
of increasing or maintaining student certainty by repeating information about
which the student has already shown certainty.

The remaining three bigram sets contain Tutor Acts that clarify the prior stu-
dent answer. First, there is an overall dependency between Student Certainness
and Tutor Bottom Outs, largely explained by the dependencies of the neutral –
BO and uncertain – BO bigrams, which both also hold for a number of stu-
dents individually. After uncertain turns, the tutor “Bottoms Out” (supplies
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Table 11. Observed, expected, and χ2 values for dependent “Certainness” – “State Act”
bigrams (p ≤ 0.05).

Bigram Observed Expected χ2 # Students

CERT - RS 1,102 1,102 169.18 12

Certain - RS 402 247.23 160.96 12
Neutral - RS 477 620.08 97.29 11

CERT - RC 289 289 20.15 1

Neutral - RC 199 162.62 19.77 4
Certain - RC 43 64.84 10.07 1

CERT - BO 308 308 82.52 6

Neutral - BO 103 173.31 69.58 7
Uncertain - BO 97 51.07 52.82 4
Certain - BO 87 69.10 6.38 1

CERT - HN 779 779 37.07 4

Mixed - HN 64 36.73 25.25 4
Neutral - HN 383 438.34 18.98 3
Certain - HN 201 174.76 6.03 1

CERT - EXP 998 998 47.08 5

Neutral - EX 651 561.57 40.86 4
Uncertain - EX 109 165.49 29.00 4
Certain - EX 197 223.90 5.23 2

the complete answer) more than expected, and after neutral turns, less than
expected. This suggests a straightforward adaptive technique for student un-
certainty. The χ2 value of the certain – BO bigram barely exceeds the critical
value even at p ≤ 0.05 and only holds for one student individually.

There is also an overall dependency between Student Certainness and Tutor
Hints, largely explained by the dependencies of the mixed – HN and neutral –
HN bigrams. After mixed turns, the tutor “Hints” (supplies a partial answer)
more than expected, and after neutral turns, less than expected. This suggests
an adaptive technique similar to the BO case, except the tutor gives less of the
answer because there is less uncertainty (i.e., there is more certainty because
the student turn is mixed). Again, the χ2 value of the certain – HN bigram
barely exceeds the critical value even at p ≤ 0.05 and only holds for one student
individually.
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Finally, there is an overall dependency between Student Certainness and
Tutor Expansions, largely explained by the dependencies of the neutral – EX
and uncertain – EX bigrams. In this case, however, the tutor responds with an
“Expansion” (supplying novel details) more than expected after neutral turns,
and less than expected after uncertain turns. This suggests another adaptive
technique to uncertainty, whereby the tutor avoids overwhelming the uncer-
tain student with unexpected details. Again, the χ2 value of the certain – EX
bigram barely exceeds the critical value even at p ≤ 0.05.

4. Correlations between Dependent Bigrams
and Student Learning

Because human–human tutoring generally yields higher student learning than
human–computer tutoring, human behaviour is often considered the gold-
standard when designing intelligent tutoring systems. Student learning is often
considered the primary evaluation metric for evaluating the effectiveness of
intelligent tutoring systems.

The dependent bigrams discussed in the previous section showed how our
human tutor responds differently to different states of student certainness.
Whether replicating these dependencies as adaptive strategies in ITSPOKE
will improve system effectiveness can only be determined after implementa-
tion, when we can compare the performance of the adaptive system with its
non-adaptive counterpart.

However, we can shed light on the effectiveness of these dependencies
in our human–human corpus. As noted above, student learning is a primary
evaluation metric in the tutoring domain. In prior work we used Pearson’s
partial correlations to analyse the relationship between student learning
and shallow dialogue measures such as student turn length (Litman et al.,
2004, 2006), as well as deeper measures using our Dialogue Act anno-
tations (Litman and Forbes-Riley, 2006a; Forbes-Riley et al., 2005). For the
pilot study discussed in this section, we used Pearson’s partial correlations
to analyse the relationships between student learning and our dependent
bigrams in our human–human corpus. First, for each dependent bigram in
Tables 9–11, we computed a per-student total: we counted the total number
of times that each dependent bigram occurred across all the dialogues of each
student, for the 14 students in the corpus. Second, we computed a Pearson’s
partial correlation across all students between each of these total bigram counts
and post-test score, controlling for pre-test score. The human–human means
for the (multiple-choice) pre- and post-tests were 0.42 and 0.72, respectively.

Briefly, a Pearson’s correlation measures the strength (R) of the linear re-
lationship between two variables across a population: in our case, the bigram
counts and post-test scores across our human–human corpus. Positive R val-



294 RECENT TRENDS IN DISCOURSE AND DIALOGUE

ues indicate that as values of one variable (X) increase, so do values of the
other variable (Y); negative R values indicate that as values of variable X in-
crease, values of variable Y decrease. A p-value is then computed to assess the
significance of this relationship. A Pearson’s partial correlation is the correla-
tion between two variables with the influence of a third variable removed from
both. In our case, pre-test and post-test scores are already significantly corre-
lated with each other in our human–human corpus (R = 0.65, p = 0.01); thus
we are interested in determining the correlation between our bigram counts and
post-test scores after removing the influence of pre-test scores.

Table 12 presents our significant results (p < 0.05) on these correlations.
The first column lists the dependent bigram, the next two columns show the
mean and standard deviation (across all students) for the bigram count, and the
last two columns give the strength (R) and significance (p) of the Pearson’s
partial correlation between post-test score and the bigram count, controlled for
pre-test score. The first row shows that the human tutor response of Negative
Feedback to student Certainness overall (the CERT – NEG bigram) occurred
on average 14 times per student, and there is a significant (p = 0.03) negative
correlation (R = −0.60) between this bigram and student learning. The next
two rows also show significant negative correlations between student learning
and the human tutor response of Negative Feedback to both certain and uncer-
tain student turns. Since Negative Feedback often follows an incorrect student
turn, we hypothesize that these negative correlations may reflect a more general
relationship between student incorrectness and learning. The last row shows a
significant negative correlation between student learning and the human tutor
response of Long Answer Questions to student Certainness overall. Note that
in essence, the CERT – NEG and CERT – LAQ bigrams can be viewed as tu-
tor act unigrams, in that they represent the occurrences of the tutor act (NEG or
LAQ) immediately preceded by any student turn. So for example, the fact that
the CERT – LAQ bigram negatively correlates with student learning suggests
that an increased use of Long Answer Questions to respond to any student turn

Table 12. Correlations between student learning and the dependent “Student Certainness –
Tutor Act” bigrams: Human–Human Corpus (14 students).

Bigram Mean Std. Dev. R p

CERT - NEG 14.00 7.51 −0.60 0.03

Certain - NEG 5.00 4.10 −0.58 0.04
Uncertain - NEG 4.86 2.96 −0.67 0.01

CERT - LAQ 11.43 7.91 −0.59 0.04
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is related to decreased learning. Of course, as with all of our correlation results,
further experimentation would be required in order to claim that an increased
use of this type of question is causally related to student learning.

Finally, the majority of dependent bigrams in Tables 9–11 do not corre-
late significantly with learning, and thus do not appear in Table 12. Together,
these results show that although there are statistically significant dependencies
between tutor Feedback, Question and State Acts and prior student Certain-
ness states, these dependencies do not in and of themselves have a significant
positive impact on student learning in our human–human tutoring corpus.

Taken in isolation, these results also suggest that these dependencies may
not yield effective adaptive techniques for increasing student learning in our
ITSPOKE tutoring system, either. However, we have previously shown that
our human–human and human–computer tutoring corpora are very different
with respect to how both shallow and deep dialogue measures relate to stu-
dent learning (Litman et al., 2004, 2006; Litman and Forbes-Riley, 2006a;
Forbes-Riley et al., 2005). Thus, our next step in this pilot study was to shed
light on the potential effectiveness of adding our dependencies as adaptive
strategies to ITSPOKE, by evaluating the current relationship between the
dependent bigrams and student learning in our human–computer corpus. For
although ITSPOKE currently does not adapt to student emotions, the student
and tutor turns in our human–computer corpus have already been annotated for
both “Certainness” and Tutor Acts, respectively; thus we can study the current
relationship between student learning and the bigrams that were found to be de-
pendent in our human–human corpus. As above, for each dependent bigram in
Tables 9–11, we computed the total number of times that bigram occurred per
student, for each of the 20 students in our human–computer corpus. Again, pre-
test and post-test scores were already significantly correlated in our human–
computer corpus (R = 0.46, p = 0.04). Thus we computed a Pearson’s partial
correlation between each bigram total and post-test score across all students,
controlled for pre-test score. The human–computer means for the (multiple-
choice) pre- and post-tests were 0.48 and 0.69, respectively.

Table 13 presents our significant results (p < 0.05) on these correlations.
The first row shows a significant positive correlation between student learning

Table 13. Correlations between student learning and the dependent “Student Certainness –
Tutor Act” bigrams: Human–computer corpus (20 students).

Bigram Mean Std. Dev. R p

Uncertain - LAQ 1.85 1.50 0.48 0.04

Neutral - RC 8.95 2.91 −0.72 0.00
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and ITSPOKE Long Answer Questions occurring after uncertain student turns.
This suggests that the use of Long Answer Questions to adapt to uncertain
student turns would be an effective adaptation strategy for increasing student
learning in ITSPOKE, even though Table 12 showed a negative correlation
between the CERT – LAQ bigram and student learning in our human–human
corpus.

The second row in Table 13 shows a significant negative correlation between
student learning and ITSPOKE Recaps occurring after neutral student turns.
However, as was shown in Table 11, we found that the human tutor responded
with significantly more Recaps than expected after neutral student turns in our
human–human corpus. Since the correlation between this bigram and learn-
ing is already negative in our human–computer corpus, increased use of this
bigram as an adaptive strategy may not be effective at improving student learn-
ing in ITSPOKE. Finally, none of the other dependent bigrams currently show
a significant correlation with learning in our human–computer corpus.

Overall, this pilot study showed that although we found numerous depen-
dent bigrams in our human–human corpus representing statistically significant
human tutor responses to student Certainness, only a handful showed a signif-
icant correlation with student learning in our human–human corpus. However,
our results suggest that these adaptive strategies may have a different impact
on student learning in ITSPOKE. A useful extension to this work will be to
investigate which of the “Student Certainness – Tutor Act” bigrams show de-
pendencies in our ITSPOKE corpus. For although the computer tutor is not
adapting to student Certainness, these dependencies will give insight into how
different the computer tutor currently is from the human tutor, and will also
give further insight into the bigram correlations that were or were not found in
our ITSPOKE corpus.

Finally, we hypothesize that the human tutor responses to Certainness are
not solely intended to improve student learning. For example, they may also be
aimed at increasing student motivation (Baylor et al., 2003) or persistence (Aist
et al., 2002) or even tutor likeability. Student learning is thus only one way of
measuring the effectiveness of adaptive strategies. As in other types of spoken
dialogue systems (e.g., Walker et al., 2002), these and other evaluation metrics
(e.g., user satisfaction) can also be measured and used to evaluate the effec-
tiveness of our adaptive strategies after implementation in ITSPOKE.

5. Related Work
While there have been other approaches to using dialogue n-grams (e.g.,
Stolcke et al., 2000, Reithinger et al., 1996), such n-grams have typically
consisted of only dialogue acts, although Higashinaka et al. (2003) propose
computing bigrams of dialogue state and following dialogue act. Moreover,
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these methods have been used to compute n-gram probabilities for implement-
ing statistical components. We propose a new use of these methods: to mine
corpora for only the significant n-grams, for use in designing strategies for
adapting to student affect in a computational system. Previous Ngram Sta-
tistics Package (NSP) applications have focused on extracting significant word
n-grams (Banerjee and Pedersen, 2003), while our “dialogue” bigrams are con-
structed from multiple turn-level annotations of student certainness and tutor
dialogue acts. Although Shah et al. (2002) have mined a human tutoring cor-
pus for significant “dialogue” bigrams to aid in the design of adaptive dialogue
strategies, their goal is to generate appropriate tutor responses to student ini-
tiative. Their bigrams consist of manually labelled student initiative and tutor
response in terms of mutually exclusive categories of communicative goals.

In the area of affective tutorial dialogue, Bhatt et al. (2004) have coded
(typed) tutoring dialogues for student hedging and affect. Their focus, however,
has been on identifying differences in human versus computer tutoring, while
our focus has been on analyzing relationships between student states and tutor
responses. Conversely, Johnson et al. (2004) have coded their tutoring dialogue
corpora with tutoring-specific dialogue acts, but have not annotated student
affect, and to date have performed only qualitative analyses. Finally, while
our research focuses on dialogue acts, others are studying affect and different
linguistic phenomena such as lexical choice (Moore et al., 2004).

6. Conclusions and Current Directions
This study proposes an empirically motivated approach to developing tech-
niques for adapting to student affect in our intelligent tutoring spoken dialogue
system (ITSPOKE). Furthermore, our method of extracting and analysing di-
alogue bigrams to develop adaptation techniques generalises to other domains
that seek to use user affective states to trigger system adaptation. We first ex-
tract “dialogue bigrams” from a corpus of human–human spoken tutoring di-
alogues annotated for student Certainness states and tutor Dialogue Acts. We
then use the Chi Square (χ2) test to determine which bigrams are dependent,
such that there is a significant relationship between the use of a Tutor Act and
a prior state of Student Certainness.

Analysis of our dependent bigrams indicates specific strategies for emo-
tion adaptation that we can implement in ITSPOKE. Specifically, we found
many dependencies between student states of certainness and subsequent tutor
dialogue acts, which suggest ways that our computer tutor can be enhanced
to adapt dialogue act generation to student affective states. In particular, our
results suggest that “Bottoming Out” and avoiding “Expansions” are viable
adaptations to student uncertainty, whereas “Hinting” is a viable adaptation to
a student state of mixed certainness, and adapting by “Restatements” may help
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maintain a state of student certainty. Positive and Negative Feedback occur sig-
nificantly more than expected after all the non-neutral student states, and thus
seem to be a generally “human” way of responding to student emotions.

Further analysis of the correlations between these dependent bigrams and
student learning suggests that these dependencies are not necessarily related to
increased student learning in our human–human tutoring corpus. In particular,
although we found numerous dependent bigrams, only a handful showed a sig-
nificant correlation with student learning, and these were negative. However,
our correlation analyses also suggest that these adaptive strategies may have a
different relationship to student learning in ITSPOKE. For example, although
our human tutor’s use of Long Answer Questions to respond to student Cer-
tainness states was negatively correlated with learning in our human–human
corpus, we found a positive correlation between student learning and Long An-
swer Questions that occurred after student uncertain turns in our (non-adaptive)
human–computer corpus. This suggests that using Long Answer Questions to
adapt to student uncertainty would nevertheless be an effective adaptive strat-
egy for our computer tutor.

Finally, we emphasise that student learning is only one way of measuring
the effectiveness of adaptive strategies. We hypothesize that our human tutor
responses to student Certainness are not solely intended to improve student
learning. For example, they may also be aimed at increasing student motiva-
tion (Baylor et al., 2003) or persistence (Aist et al., 2002) or even tutor likeabil-
ity. As in other types of spoken dialogue systems (Walker et al., 2002), these
and other evaluation metrics (e.g. user satisfaction) can also be used to evaluate
the effectiveness of adaptive strategies after implementation in ITSPOKE.

Our approach for developing adaptive strategies is currently based on one
human tutor’s responses across dialogues with multiple students. As Chi et al.
(2001) note, different tutors have different teaching styles, both based on
their training and based on their individual differences. Moreover, it is an
open question in the tutoring community as to whether, and why, one tutor
is better than any other with respect to student learning or other evaluation
metrics. Analysing a different tutor’s responses may yield different dependen-
cies between student emotions and tutor responses. Analysing the responses of
multiple tutors would yield a broader range of responses from which common
responses could be extracted. However, the common responses of multiple
tutors are not necessarily better for improving student learning than those of a
human tutor who responds differently. Moreover, such a “mix and match” ap-
proach would not necessarily yield a consistent generalisation about adaptive
strategies for student emotion. We have already demonstrated that students
learned a significant amount with our human tutor (Litman et al., 2006). Thus,
although it is an open question as to why these students learn, analysing our
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tutor’s responses across multiple students enables a consistent generalisation
about one successful tutor’s responses to student emotion.

Again, it is important to emphasise that we do not know yet if these adaptive
techniques will be “effective”, i.e., that they will improve student learning or
improve other performance measures when implemented in our computer tu-
tor. Our next step will thus be to use these human tutor responses as a guideline
for implementing adaptive techniques in ITSPOKE. We can then compare the
performance of the adaptive system with its non-adaptive counterpart, to see
whether or not system effectiveness is improved. Currently ITSPOKE adapta-
tion is based only on the correctness of student turns.

Further, in this paper we assumed “independence” of the different tutor acts,
due to the fact that considering the combination of Tutor Acts in each turn
yielded a data sparsity problem. For example, as noted in Section 3, we had 478
unique Tutor Act combinations, 294 of which occurred only once. However,
there are counter-examples to this independence assumption. For example, we
found 84 tutor turns containing the sequence “Positive Feedback, Hint”, with
or without additional Tutor Acts; this intuitively seems like an effective com-
bination. Examples of other high-frequency combinations of two Tutor Acts
include: 68 instances of “Expansion, Short Answer Question”, 24 instances
of “Hint, Deep Answer Question”, and 81 instances of “Negative Feedback,
Hint”. In future work we will investigate dependencies and correlations for
such combinations of Tutor Acts, beginning with combinations of two Acts.11

We will also investigate how other factors interact with student emotional
states to determine subsequent Tutor Acts. For although our results demon-
strate significant dependencies between emotion and our human tutor
responses, only a small amount of variance is accounted for in our results,
indicating that other factors play a role in determining tutor responses. One
such factor is student “correctness”, which is not identical to student “certain-
ness” (as measured by “hedging” (Bhatt et al., 2004)); for example, a student
may be “certain” but “incorrect”. Other factors include the dialogue act that the
student is performing. We have annotated student turn “correctness” as well as
“Student Dialogue Acts” (in tandem with our Tutor Dialogue Acts), and we
have begun investigating relationships between these annotations (Litman and
Forbes-Riley, 2006a). Annotation of student “Frustration” and “Anger” cate-
gories has also recently been completed. We plan to extend our bigram analy-
sis by looking at other n-grams combining these new student turn annotations
with our tutor turn annotations.

11We thank an anonymous reviewer for this interesting suggestion.
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Appendix: More Examples of Tutor Turns Containing
Positive and Negative Feedback
Each example below comes from a different human tutoring dialogue. These examples further
illustrate how Tutor Positive and Negative Feedback Acts label feedback based on the presence
of lexical items in the tutor turn. As the examples below show, these labels can be used to refer
to tutor feedback concerning the correctness of the student’s prior turn, but they can also be used
to refer to instances of tutor encouragement, and they can also be used to refer to tutor feedback
regarding the student’s prior essay, or regarding other aspects of the tutoring session.

1 STUDENT64: The force of gravity is in proportion to the mass.

TUTOR65: Yes, uh, but that alone is not enough. [POS, NEG]

2 STUDENT1: Ok. (student has just submitted first essay)

TUTOR2: Hm, yeah, you are thinking in the right direction but uh, I think needs a little
more few more clarifications. [POS, NEG]

3 STUDENT65: I said the head would apply force on the neck. (referring to prior essay
revision)

TUTOR66: Uh, no, uh, right in the beginning, for example, what you say in the begin-
ning of the essay is all correct, but what you are saying is- you are telling why uh head
is left behind now. [ NEG, POS, HN]

4 STUDENT8: Oh, it says does the earth pull equally. (referring to the problem statement)

TUTOR9: No not that that that- you have- what you have said is correct- your answer
is correct. There is no-nothing wrong with it, the only thing is that one could have been
bothered a little uh by the fact that the- when force is exerted on a body the body must
accelerate. That is the Newton’s second law of motion. [NEG, POS, EX]

5 STUDENT98: Should I try and click it again? (referring to the essay submit button on
the interface)

TUTOR99: No no, that’s not the problem. Perhaps there is something in the interface.
So, after you have finished writing just indicate by words so I’ll know. Um, now uh, you
have stated everything here... Um, one suggestion is that uh you uh separate the reason
and... You see, for each one of these three factors which determine the time taken to fall,
there is a sep- different reason. For example, acceleration is same, uh, from where did
you conclude it? [NEG, POS, RD, DAQ]
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